A352275 a(0) = 1 and a(n) = Sum_{k = 0..2*n} n/(n + 2*k)*binomial(n + 2*k,k) for n >= 1.
1, 4, 64, 1429, 35072, 898129, 23571781, 628750217, 16965558016, 461752375705, 12652302369439, 348552604899778, 9644571491252069, 267852878928912034, 7462156684641697991, 208446714456132946429, 5836259481820028112640, 163741162073796817779389, 4602160147618819467316159
Offset: 0
Examples
Examples of supercongruences: a(3*5) - a(3) = 208446714456132946429 - 1429 = (2^3)*3*(5^4)*13*41* 26072134391011 == 0 (mod 5^4) a(17) - a(1) = 163741162073796817779389 - 4 = 5*(17^3)*1506943* 4423278397003 == 0 (mod 17^3)
Links
- Paolo Xausa, Table of n, a(n) for n = 0..674
- R. Meštrović, Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862--2012), arXiv:1111.3057 [math.NT], 2011.
Programs
-
Maple
seq(add(n/(n + 2*k)*binomial(n + 2*k,k), k = 0..2*n), n = 1..25);
-
Mathematica
nterms=25;Join[{1},Table[Sum[n/(n+2k)Binomial[n+2k,k],{k,0,2n}],{n,nterms-1}]] (* Paolo Xausa, Apr 11 2022 *)
-
PARI
a(n) = if (n==0, 1, sum(k=0, 2*n, binomial(n + 2*k,k)*n/(n+2*k))); \\ Michel Marcus, Mar 17 2022
Formula
a(n) ~ 5^(5*n + 3/2) / (19 * sqrt(Pi*n) * 2^(2*n + 1) * 3^(3*n + 1/2)). - Vaclav Kotesovec, Mar 15 2022
Comments