cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A352279 a(0) = 1; a(n) = 2 * Sum_{k=0..floor((n-1)/2)} binomial(n-1,2*k) * a(n-2*k-1).

Original entry on oeis.org

1, 2, 4, 10, 32, 114, 448, 1978, 9472, 48738, 270336, 1595114, 9965568, 65852882, 457326592, 3329243546, 25356271616, 201326396098, 1663597019136, 14279558011850, 127044810702848, 1170023757062450, 11136610150121472, 109395885009537402, 1107781178494025728, 11549900930966957346
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 10 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = 2 Sum[Binomial[n - 1, 2 k] a[n - 2 k - 1], {k, 0, Floor[(n - 1)/2]}]; Table[a[n], {n, 0, 25}]
    nmax = 25; CoefficientList[Series[Exp[2 Sinh[x]], {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[(-1)^k * Binomial[n, k] * BellB[k, -1] * BellB[n-k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 27 2022 *)
  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(2*sinh(x)))) \\ Seiichi Manyama, Mar 26 2022

Formula

E.g.f.: exp( 2 * sinh(x) ).
a(n) = Sum_{k=0..n} 2^k * A136630(n,k). - Seiichi Manyama, Feb 18 2025

A352640 Expansion of e.g.f. exp(3*sin(x)).

Original entry on oeis.org

1, 3, 9, 24, 45, -24, -747, -3864, -7623, 48576, 548001, 2175360, -5269275, -133496448, -785549331, 789324288, 52523738865, 398157422592, -157735851975, -31426593116160, -278010988509411, 108354846277632, 27060485795905221, 257882404940021760
Offset: 0

Views

Author

Seiichi Manyama, Mar 25 2022

Keywords

Crossrefs

Programs

  • Mathematica
    With[{m = 23}, Range[0, m]! * CoefficientList[Series[Exp[3*Sin[x]], {x, 0, m}], x]] (* Amiram Eldar, Mar 26 2022 *)
  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(3*sin(x))))
    
  • PARI
    a(n) = if(n==0, 1, 3*sum(k=0, (n-1)\2, (-1)^k*binomial(n-1, 2*k)*a(n-2*k-1)));

Formula

a(0) = 1; a(n) = 3 * Sum_{k=0..floor((n-1)/2)} (-1)^k * binomial(n-1,2*k) * a(n-2*k-1).
a(n) = Sum_{k=0..n} 3^k * i^(n-k) * A136630(n,k), where i is the imaginary unit. - Seiichi Manyama, Feb 18 2025
Showing 1-2 of 2 results.