A352289 a(1) = 1 and thereafter a(n) = 2*prime(a(n-1)).
1, 4, 14, 86, 886, 13766, 298154, 8455786, 300427382, 12942000398, 659492202274, 38995629272042, 2634767648759954, 200877694833442486, 17101872791349773894, 1611548301646589127698, 166820830882144877428234
Offset: 1
Examples
For n=3, a(3) = 14 is the Matula-Goebel code of the following tree root 14 / \ tree numbers of subtrees shown, 4 1 with "1" being childless, / \ and n=3 of those 1 1
Links
- Lucas A. Brown, Python program.
- Arnau Mir, Francesc Rosselló, and Lucía Rotger, A New Balance Index for Phylogenetic Trees, arXiv:1202.1223 [q-bio.PE], 2012.
Programs
-
Mathematica
NestList[2 Prime[#] &, 1, 10] (* Michael De Vlieger, Apr 18 2022 *)
-
PARI
a(n) = my(ret=1); for(i=2,n, ret=2*prime(ret)); ret;
-
Python
from functools import lru_cache from sympy import prime @lru_cache(maxsize=None) def A352289(n): return 1 if n == 1 else 2*prime(A352289(n-1)) # Chai Wah Wu, Apr 18 2022
Extensions
a(10)-a(15) from Daniel Suteu, Mar 19 2022
a(16) and a(17) from Lucas A. Brown, Sep 04 2024
Comments