A352303
Expansion of e.g.f. 1/(exp(x) - x^3).
Original entry on oeis.org
1, -1, 1, 5, -47, 239, -239, -11761, 170689, -1237825, -2360159, 238756319, -4146035519, 32586126143, 359988680689, -18567245926321, 351652342984321, -2283764958280321, -89760640709677247, 3866819337993369023, -74731210747948586879, 167887841949213912959
Offset: 0
-
m = 21; Range[0, m]! * CoefficientList[Series[1/(Exp[x] - x^3), {x, 0, m}], x] (* Amiram Eldar, Mar 12 2022 *)
-
my(N=40, x='x+O('x^N)); Vec(serlaplace(1/(exp(x)-x^3)))
-
b(n, m) = if(n==0, 1, sum(k=1, n, (-1+(k==m)*m!)*binomial(n, k)*b(n-k, m)));
a(n) = b(n, 3);
A352300
Expansion of e.g.f. 1/(2 - exp(x) - x^4).
Original entry on oeis.org
1, 1, 3, 13, 99, 781, 7563, 84253, 1103595, 16074589, 260443083, 4630046653, 90017588235, 1894771249021, 42957132108075, 1043136555486493, 27024421701469995, 743851294350730141, 21679544916491784843, 666932347454809048189
Offset: 0
-
m = 19; Range[0, m]! * CoefficientList[Series[1/(2 - Exp[x] - x^4), {x, 0, m}], x] (* Amiram Eldar, Mar 12 2022 *)
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(2-exp(x)-x^4)))
-
b(n, m) = if(n==0, 1, sum(k=1, n, (1+(k==m)*m!)*binomial(n, k)*b(n-k, m)));
a(n) = b(n, 4);
A352307
Expansion of e.g.f. 1/(2 - exp(x) - x^3/6).
Original entry on oeis.org
1, 1, 3, 14, 83, 621, 5583, 58493, 700507, 9438253, 141291843, 2326680313, 41797029035, 813422096709, 17047913249279, 382815685896293, 9169316015977675, 233352842701661021, 6288004372005738747, 178851946015229702545, 5354894260179239755995
Offset: 0
-
m = 20; Range[0, m]! * CoefficientList[Series[1/(2 - Exp[x] - x^3/6), {x, 0, m}], x] (* Amiram Eldar, Mar 12 2022 *)
-
my(N=40, x='x+O('x^N)); Vec(serlaplace(1/(2-exp(x)-x^3/6)))
-
b(n, m) = if(n==0, 1, sum(k=1, n, (1+(k==m))*binomial(n, k)*b(n-k, m)));
a(n) = b(n, 3);
Showing 1-3 of 3 results.