A352299
Expansion of e.g.f. 1/(2 - exp(x) - x^3).
Original entry on oeis.org
1, 1, 3, 19, 123, 1021, 10683, 127093, 1725867, 26535613, 452307243, 8475606613, 173390108235, 3842119808749, 91675559886459, 2343875745873493, 63920729617231275, 1852126733351677021, 56823327291638414667, 1840195730889731550805
Offset: 0
-
m = 19; Range[0, m]! * CoefficientList[Series[1/(2 - Exp[x] - x^3), {x, 0, m}], x] (* Amiram Eldar, Mar 12 2022 *)
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(2-exp(x)-x^3)))
-
b(n, m) = if(n==0, 1, sum(k=1, n, (1+(k==m)*m!)*binomial(n, k)*b(n-k, m)));
a(n) = b(n, 3);
A352306
Expansion of e.g.f. 1/(2 - exp(x) - x^2/2).
Original entry on oeis.org
1, 1, 4, 19, 129, 1071, 10743, 125455, 1675439, 25167073, 420070323, 7712503173, 154475622513, 3351859639363, 78324320723561, 1960968388497523, 52368881358012435, 1485952518531483045, 44643697199669589447, 1415782273405809697009
Offset: 0
-
m = 19; Range[0, m]! * CoefficientList[Series[1/(2 - Exp[x] - x^2/2), {x, 0, m}], x] (* Amiram Eldar, Mar 12 2022 *)
-
my(N=40, x='x+O('x^N)); Vec(serlaplace(1/(2-exp(x)-x^2/2)))
-
b(n, m) = if(n==0, 1, sum(k=1, n, (1+(k==m))*binomial(n, k)*b(n-k, m)));
a(n) = b(n, 2);
A352308
Expansion of e.g.f. 1/(2 - exp(x) - x^4/24).
Original entry on oeis.org
1, 1, 3, 13, 76, 551, 4803, 48833, 567465, 7418263, 107752293, 1721642143, 30008756055, 566650322031, 11523037802461, 251062618129063, 5834798259848815, 144078299659541361, 3766993649599221903, 103961442644871088897, 3020133228180079209075
Offset: 0
-
m = 20; Range[0, m]! * CoefficientList[Series[1/(2 - Exp[x] - x^4/24), {x, 0, m}], x] (* Amiram Eldar, Mar 12 2022 *)
-
my(N=40, x='x+O('x^N)); Vec(serlaplace(1/(2-exp(x)-x^4/24)))
-
b(n, m) = if(n==0, 1, sum(k=1, n, (1+(k==m))*binomial(n, k)*b(n-k, m)));
a(n) = b(n, 4);
Showing 1-3 of 3 results.