A352332 Numbers k for which k = phi(k') + phi(k''), where phi is the Euler totient function (A000010), k' the arithmetic derivative of k (A003415) and k'' the second arithmetic derivative of k (A068346).
4, 260, 294, 740, 1460, 3140, 3860, 5540, 8420, 10820, 15140, 19940, 21860, 24020, 24260, 27620, 37460, 40340, 46820, 49460, 55940, 61220, 70340, 85460, 101540, 114020, 124340, 132740, 133220, 144260, 148340, 149540, 155060, 162020, 164420, 167060, 170420, 173540
Offset: 1
Keywords
Examples
phi(4') + phi(4'') = phi(4) + phi(4) = 2 + 2 = 4, so 4 is a term. phi(260') + phi(260'') = phi(332) + phi(336) = 164 + 96 = 260, so 260 is a term.
Programs
-
Magma
f:=func
; [n:n in [2..174000]|not IsPrime(n) and n-EulerPhi(Floor(f(n))) eq EulerPhi(Floor(f(Floor(f(n)))))]; -
Mathematica
d[0] = d[1] = 0; d[n_] := n * Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); Select[Range[200000], CompositeQ[#] && EulerPhi[d[#]] + EulerPhi[d[d[#]]] == # &] (* Amiram Eldar, Apr 10 2022 *)
-
PARI
ad(n) = vecsum([n/f[1]*f[2]|f<-factor(n+!n)~]); \\ A003415 isok(k) = my(adk=ad(k)); !isprime(k) && (k == eulerphi(adk) + eulerphi(ad(adk))); \\ Michel Marcus, Apr 30 2022
Comments