cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352332 Numbers k for which k = phi(k') + phi(k''), where phi is the Euler totient function (A000010), k' the arithmetic derivative of k (A003415) and k'' the second arithmetic derivative of k (A068346).

Original entry on oeis.org

4, 260, 294, 740, 1460, 3140, 3860, 5540, 8420, 10820, 15140, 19940, 21860, 24020, 24260, 27620, 37460, 40340, 46820, 49460, 55940, 61220, 70340, 85460, 101540, 114020, 124340, 132740, 133220, 144260, 148340, 149540, 155060, 162020, 164420, 167060, 170420, 173540
Offset: 1

Views

Author

Marius A. Burtea, Apr 09 2022

Keywords

Comments

If p > 3 is at the intersection of A023221 and A005383, then m = 20*p is a term. Indeed, m' = (20*p)' = 24*p + 20 = 4*(6*p + 5), m'' = (4*(6*p + 5))' = 4*(6*p + 6) = 24*(p + 1), phi(m') + phi(m'') = phi(4*(6*p + 5)) + phi(24*(p + 1)) = 2*(6*p + 4) + phi(48*(p + 1)/2) = 2*(6*p + 4) + 16*(p - 1)/2 = 12*p + 8 + 8*p - 8 = 20*p = m.

Examples

			phi(4') + phi(4'') = phi(4) + phi(4) = 2 + 2 = 4, so 4 is a term.
phi(260') + phi(260'') = phi(332) + phi(336) = 164 + 96 = 260, so 260 is a term.
		

Crossrefs

Programs

  • Magma
    f:=func; [n:n in [2..174000]|not IsPrime(n) and n-EulerPhi(Floor(f(n))) eq EulerPhi(Floor(f(Floor(f(n)))))];
    
  • Mathematica
    d[0] = d[1] = 0; d[n_] := n * Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); Select[Range[200000], CompositeQ[#] && EulerPhi[d[#]] + EulerPhi[d[d[#]]] == # &] (* Amiram Eldar, Apr 10 2022 *)
  • PARI
    ad(n) = vecsum([n/f[1]*f[2]|f<-factor(n+!n)~]); \\ A003415
    isok(k) = my(adk=ad(k)); !isprime(k) && (k == eulerphi(adk) + eulerphi(ad(adk))); \\ Michel Marcus, Apr 30 2022