cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A352342 Lazy-Pell-Niven numbers: numbers that are divisible by the sum of the digits in their maximal (or lazy) representation in terms of the Pell numbers (A352339).

Original entry on oeis.org

1, 2, 4, 9, 12, 15, 20, 24, 25, 28, 30, 35, 40, 48, 50, 54, 56, 60, 63, 64, 70, 72, 78, 84, 88, 91, 96, 102, 115, 120, 136, 144, 160, 162, 168, 180, 182, 184, 189, 207, 209, 210, 216, 217, 234, 246, 256, 261, 270, 304, 306, 308, 315, 320, 328, 333, 350, 352, 357
Offset: 1

Views

Author

Amiram Eldar, Mar 12 2022

Keywords

Comments

Numbers k such that A352340(k) | k.

Examples

			4 is a term since its maximal Pell representation, A352339(4) = 11, has the sum of digits A352340(4) = 1+1 = 2 and 4 is divisible by 2.
		

Crossrefs

Programs

  • Mathematica
    pell[1] = 1; pell[2] = 2; pell[n_] := pell[n] = 2*pell[n - 1] + pell[n - 2]; pellp[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[pell[k] <= m, k++]; k--; AppendTo[s, k]; m -= pell[k]; k = 1]; IntegerDigits[Total[3^(s - 1)], 3]]; q[n_] := Module[{v = pellp[n]}, nv = Length[v]; i = 1; While[i <= nv - 2, If[v[[i]] > 0 && v[[i + 1]] == 0 && v[[i + 2]] < 2, v[[i ;; i + 2]] += {-1, 2, 1}; If[i > 2, i -= 3]]; i++]; i = Position[v, _?(# > 0 &)]; Divisible[n, Plus @@ v[[i[[1, 1]] ;; -1]]]]; Select[Range[300], q]

A352341 Numbers whose maximal Pell representation (A352339) is palindromic.

Original entry on oeis.org

0, 1, 3, 6, 8, 10, 20, 27, 40, 49, 54, 58, 63, 68, 88, 93, 119, 136, 150, 167, 221, 238, 288, 300, 310, 322, 334, 338, 360, 372, 382, 394, 406, 508, 530, 542, 696, 737, 771, 812, 833, 867, 908, 942, 983, 1242, 1276, 1317, 1392, 1681, 1710, 1734, 1763, 1792, 1802
Offset: 1

Views

Author

Amiram Eldar, Mar 12 2022

Keywords

Comments

A000129(n) - 2 is a term for n > 1. The maximal Pell representations of these numbers are 0, 11, 121, 1221, 12221, ... (0 and A132583).
A048739 is a subsequence since these are the repunit numbers in the maximal Pell representation.
A065113 is a subsequence since the maximal Pell representation of A065113(n) is 2*n 2's.

Examples

			The first 10 terms are:
   n  a(n)  A352339(a(n))
  --  ----  -------------
   1    0               0
   2    1               1
   3    3              11
   4    6              22
   5    8             111
   6   10             121
   7   20            1111
   8   27            1221
   9   40            2222
  10   49           11111
		

Crossrefs

Programs

  • Mathematica
    pell[1] = 1; pell[2] = 2; pell[n_] := pell[n] = 2*pell[n - 1] + pell[n - 2]; pellp[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[pell[k] <= m, k++]; k--; AppendTo[s, k]; m -= pell[k]; k = 1]; IntegerDigits[Total[3^(s - 1)], 3]]; lazy[n_] := Module[{v = pellp[n]}, nv = Length[v]; i = 1; While[i <= nv - 2, If[v[[i]] > 0 && v[[i + 1]] == 0 && v[[i + 2]] < 2, v[[i ;; i + 2]] += {-1, 2, 1}; If[i > 2, i -= 3]]; i++]; i = Position[v, _?(# > 0 &)]; If[i == {}, 0, FromDigits[v[[i[[1, 1]] ;; -1]]]]]; Select[Range[0, 2000], PalindromeQ[lazy[#]] &]

A352340 a(n) is the sum of digits of n in the maximal Pell representation of n (A352339).

Original entry on oeis.org

0, 1, 1, 2, 2, 3, 4, 2, 3, 3, 4, 5, 3, 4, 4, 5, 3, 4, 5, 3, 4, 4, 5, 6, 4, 5, 5, 6, 4, 5, 6, 4, 5, 5, 6, 7, 5, 6, 6, 7, 8, 4, 5, 5, 6, 4, 5, 6, 4, 5, 5, 6, 7, 5, 6, 6, 7, 5, 6, 7, 5, 6, 6, 7, 8, 6, 7, 7, 8, 9, 5, 6, 6, 7, 5, 6, 7, 5, 6, 6, 7, 8, 6, 7, 7, 8, 6
Offset: 0

Views

Author

Amiram Eldar, Mar 12 2022

Keywords

Crossrefs

Programs

  • Mathematica
    pell[1] = 1; pell[2] = 2; pell[n_] := pell[n] = 2*pell[n - 1] + pell[n - 2]; pellp[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[pell[k] <= m, k++]; k--; AppendTo[s, k]; m -= pell[k]; k = 1]; IntegerDigits[Total[3^(s - 1)], 3]]; a[n_] := Module[{v = pellp[n]}, nv = Length[v]; i = 1; While[i <= nv - 2, If[v[[i]] > 0 && v[[i + 1]] == 0 && v[[i + 2]] < 2, v[[i ;; i + 2]] += {-1, 2, 1}; If[i > 2, i -= 3]]; i++]; i = Position[v, _?(# > 0 &)]; If[i == {}, 0, Total[v[[i[[1, 1]] ;; -1]]]]]; Array[a, 100, 0]

Formula

a(n) = A007953(A352339(n)).
a(n) >= A265744(n).

A352343 Numbers k such that k and k+1 are both lazy-Pell-Niven numbers (A352342).

Original entry on oeis.org

1, 24, 63, 209, 216, 459, 560, 584, 656, 729, 999, 1110, 1269, 1728, 1859, 1989, 2100, 2196, 2197, 2255, 2650, 2651, 2820, 3443, 3497, 4080, 4563, 5291, 5784, 5785, 5837, 5928, 6252, 6383, 7344, 7657, 7812, 8150, 8203, 8459, 8670, 8749, 9251, 9295, 9372, 9464, 9840, 9884
Offset: 1

Views

Author

Amiram Eldar, Mar 12 2022

Keywords

Comments

Numbers k such that A352340(k) | k and A352340(k+1) | k+1.

Examples

			24 is a term since 24 and 25 are both lazy-Pell-Niven numbers: the maximal Pell representation of 24, A352339(24) = 1210, has the sum of digits A352340(24) = 1+2+1+0 = 4 and 24 is divisible by 4, and the maximal Pell representation of 25, A352339(25) = 1211, has the sum of digits A352340(25) = 1+2+1+1 = 5 and 25 is divisible by 5.
		

Crossrefs

Programs

  • Mathematica
    pell[1] = 1; pell[2] = 2; pell[n_] := pell[n] = 2*pell[n - 1] + pell[n - 2]; pellp[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[pell[k] <= m, k++]; k--; AppendTo[s, k]; m -= pell[k]; k = 1]; IntegerDigits[Total[3^(s - 1)], 3]]; lazyPellNivenQ[n_] := Module[{v = pellp[n]}, nv = Length[v]; i = 1; While[i <= nv - 2, If[v[[i]] > 0 && v[[i + 1]] == 0 && v[[i + 2]] < 2, v[[i ;; i + 2]] += {-1, 2, 1}; If[i > 2, i -= 3]]; i++]; i = Position[v, _?(# > 0 &)]; Divisible[n, Plus @@ v[[i[[1, 1]] ;; -1]]]]; Select[Range[10^4], lazyPellNivenQ[#] && lazyPellNivenQ[#+1] &]

A352344 Starts of runs of 3 consecutive lazy-Pell-Niven numbers (A352342).

Original entry on oeis.org

2196, 2650, 5784, 17459, 28950, 57134, 112878, 124506, 147078, 162809, 169694, 191538, 210494, 218654, 223344, 223459, 230894, 239360, 258740, 277455, 278900, 285615, 289695, 291328, 291858, 295408, 311524, 314658, 324734, 332894, 335179, 341900, 347718, 362880
Offset: 1

Views

Author

Amiram Eldar, Mar 12 2022

Keywords

Examples

			2196 is a term since 2196, 2197 and 2198 are all divisible by the sum of the digits in their maximal Pell representation:
     k  A352339(k)  A352340(k)  k/A352340(k)
  ----  ----------  ----------  ------------
  2196   121222020          12           183
  2197   121222021          13           169
  2198   121222022          14           157
		

Crossrefs

Subsequence of A352342 and A352343.
A352345 is a subsequence.

Programs

  • Mathematica
    pell[1] = 1; pell[2] = 2; pell[n_] := pell[n] = 2*pell[n - 1] + pell[n - 2]; pellp[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[pell[k] <= m, k++]; k--; AppendTo[s, k]; m -= pell[k]; k = 1]; IntegerDigits[Total[3^(s - 1)], 3]]; lazyPellNivenQ[n_] := Module[{v = pellp[n]}, nv = Length[v]; i = 1; While[i <= nv - 2, If[v[[i]] > 0 && v[[i + 1]] == 0 && v[[i + 2]] < 2, v[[i ;; i + 2]] += {-1, 2, 1}; If[i > 2, i -= 3]]; i++]; i = Position[v, ?(# > 0 &)]; Divisible[n, Plus @@ v[[i[[1, 1]] ;; -1]]]]; seq[count, nConsec_] := Module[{lpn = lazyPellNivenQ /@ Range[nConsec], s = {}, c = 0, k = nConsec + 1}, While[c < count, If[And @@ lpn, c++; AppendTo[s, k - nConsec]]; lpn = Join[Rest[lpn], {lazyPellNivenQ[k]}]; k++]; s]; seq[30, 3]

A352345 Starts of runs of 4 consecutive lazy-Pell-Niven numbers (A352342).

Original entry on oeis.org

750139, 41765247, 54831951, 56423275, 136038447, 151175724, 223956843, 227483124, 293913170, 362557214, 382572475, 457616575, 502106253, 562407324, 586380624, 637133390, 724382239, 771849439, 774421478, 859463253, 926398647, 953750523, 1043787390, 1193063550
Offset: 1

Views

Author

Amiram Eldar, Mar 12 2022

Keywords

Comments

Conjecture: There are no runs of 5 consecutive lazy-Pell-Niven numbers (checked up to 10^9).

Examples

			750139 is a term since 750139, 750140, 750141 and 750142 are all divisible by the sum of the digits in their maximal Pell representation:
       k        A352339(k)  A352340(k)  k/A352340(k)
  ------  ----------------  ---------   -----------
  750139  1102022021112220         19         39481
  750140  1102022021112221         20         37507
  750141  1102022021112222         21         35721
  750142  1102022021120210         17         44126
		

Crossrefs

Showing 1-6 of 6 results.