A352363 Triangle read by rows. The incomplete Bell transform of the swinging factorials A056040.
1, 0, 1, 0, 1, 1, 0, 2, 3, 1, 0, 6, 11, 6, 1, 0, 6, 50, 35, 10, 1, 0, 30, 166, 225, 85, 15, 1, 0, 20, 756, 1246, 735, 175, 21, 1, 0, 140, 2932, 7588, 5761, 1960, 322, 28, 1, 0, 70, 11556, 45296, 46116, 20181, 4536, 546, 36, 1
Offset: 0
Examples
Triangle starts: [0] 1; [1] 0, 1; [2] 0, 1, 1; [3] 0, 2, 3, 1; [4] 0, 6, 11, 6, 1; [5] 0, 6, 50, 35, 10, 1; [6] 0, 30, 166, 225, 85, 15, 1; [7] 0, 20, 756, 1246, 735, 175, 21, 1; [8] 0, 140, 2932, 7588, 5761, 1960, 322, 28, 1; [9] 0, 70, 11556, 45296, 46116, 20181, 4536, 546, 36, 1;
Programs
-
Maple
SwingNumber := n -> n! / iquo(n, 2)!^2: for n from 0 to 9 do seq(IncompleteBellB(n, k, seq(SwingNumber(j), j = 0..n)), k = 0..n) od;
Formula
Given a sequence s let s|n denote the initial segment s(0), s(1), ..., s(n).
(T(s))(n, k) = IncompleteBellPolynomial(n, k, s|n), where s(n) = n!/floor(n/2)!^2.