A352411 E.g.f.: x / LambertW( x/(1-x) ).
1, 0, -1, 1, -7, 31, -281, 2381, -28015, 346879, -5149009, 82769149, -1499707991, 29444151023, -632715633577, 14631547277101, -364321853163871, 9686058045625471, -274387229080161569, 8241211775883617405, -261766195805536280839, 8763341168691985628719
Offset: 0
Keywords
Examples
E.g.f.: A(x) = 1 + 0*x - x^2/2! + x^3/3! - 7*x^4/4! + 31*x^5/5! - 281*x^6/6! + 2381*x^7/7! - 28015*x^8/8! + ... such that A(x) = (1-x) * exp(x/A(x)), where exp(x/A(x)) = 1 + x + x^2/2! + 4*x^3/3! + 9*x^4/4! + 76*x^5/5! + 175*x^6/6! + 3606*x^7/7! + 833*x^8/8! + ... Related series. The e.g.f. A(x) satisfies A( x/(exp(-x) + x) ) = 1/(exp(-x) + x), where 1/(exp(-x) + x) = 1 - x^2/2! + x^3/3! + 5*x^4/4! - 19*x^5/5! - 41*x^6/6! + 519*x^7/7! - 183*x^8/8! + ... Related table. Another defining property of the e.g.f. A(x) is illustrated here. The table of coefficients of x^k/k! in A(x)^n begins: n=1: [1, 0, -1, 1, -7, 31, -281, 2381, -28015, ...]; n=2: [1, 0, -2, 2, -8, 42, -332, 2970, -33392, ...]; n=3: [1, 0, -3, 3, -3, 33, -243, 2397, -26631, ...]; n=4: [1, 0, -4, 4, 8, 4, -104, 1292, -15712, ...]; n=5: [1, 0, -5, 5, 25, -45, -5, 285, -6095, ...]; n=6: [1, 0, -6, 6, 48, -114, -36, 6, -720, ...]; n=7: [1, 0, -7, 7, 77, -203, -287, 1085, -7, ...]; n=8: [1, 0, -8, 8, 112, -312, -848, 4152, -1856, 8, ...]; ... from which we can illustrate that the partial sum of coefficients of x^k, k=0..n, in A(x)^n equals zero, for n > 1, as follows: n=1: 1 = 1 + 0; n=2: 0 = 1 + 0 + -2/2!; n=3: 0 = 1 + 0 + -3/2! + 3/3!; n=4: 0 = 1 + 0 + -4/2! + 4/3! + 8/4!; n=5: 0 = 1 + 0 + -5/2! + 5/3! + 25/4! + -45/5!; n=6: 0 = 1 + 0 + -6/2! + 6/3! + 48/4! + -114/5! + -36/6!; n=7: 0 = 1 + 0 + -7/2! + 7/3! + 77/4! + -203/5! + -287/6! + 1085/7!; n=8: 0 = 1 + 0 + -8/2! + 8/3! + 112/4! + -312/5! + -848/6! + 4152/7! + -1856/8!; ...
Programs
-
PARI
{a(n) = n!*polcoeff( x/serreverse( x/(exp(-x +x^2*O(x^n)) + x) ),n)} for(n=0,30,print1(a(n),", "))
-
PARI
my(x='x+O('x^30)); Vec(serlaplace(x/lambertw(x/(1-x)))) \\ Michel Marcus, Mar 17 2022
Formula
E.g.f. A(x) = Sum_{n>=0} a(n)*x^n/n! satisfies:
(1) A(x) = x / LambertW( x/(1-x) ).
(2) A(x) = (1-x) * exp( x/A(x) ).
(3) A(x) = x / log( A(x)/(1-x) ).
(4) A( x/(exp(-x) + x) ) = 1/(exp(-x) + x).
(5) A(x) = x / Series_Reversion( x/(exp(-x) + x) ).
(6) Sum_{k=0..n} [x^k] A(x)^n = 0, for n > 1.
(7) [x^(n+1)/(n+1)!] A(x)^n = (-1)^n * n for n >= (-1).
a(n) ~ (-1)^(n+1) * exp(-1) * (1 - exp(-1))^(n - 1/2) * n^(n-1). - Vaclav Kotesovec, Mar 15 2022
Comments