cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A352432 Number of tilings of a 4 X n rectangle using dominoes and 2 X 2 tiles.

Original entry on oeis.org

1, 1, 11, 29, 165, 593, 2773, 11093, 48605, 201829, 864901, 3638261, 15472261, 65377669, 277294885, 1173523013, 4972873413, 21056700293, 89200845765, 377774394309, 1600161267781, 6777276186821, 28705824305861, 121582507360709
Offset: 0

Views

Author

Gerhard Kirchner, Mar 17 2022

Keywords

Comments

The sequence is based on A352431.

Examples

			a(2)=11:
   ___     ___     ___     ___     ___     ___
  |   |   |   |   |   |   | | |   |___|   |___|
  |___|   |___|   |___|   |_|_|   |___|   |___|
  |   |   | | |   |___|   |   |   |   |   |___|
  |___|   |_|_|   |___|   |___|   |___|   |___|
.
       ___     ___     ___     ___     ___
      |___|   | | |   |___|   |___|   | | |
      |   |   |_|_|   | | |   |___|   |_|_|
      |___|   | | |   |_|_|   | | |   |___|
      |___|   |_|_|   |___|   |_|_|   |___|
		

Crossrefs

Formula

G.f.:(1 - 2*x - 2*x^2 + 4*x^3)/(1 - 3*x - 10*x^2 + 18*x^3 + 14*x^4 - 20*x^5).
a(n) = 3*a(n-1) + 10*a(n-2) - 18*a(n-3) - 14*a(n-4) + 20*a(n-5).

A352433 Number of tilings of a 5 X 2n rectangle using dominoes and 2 X 2 tiles.

Original entry on oeis.org

1, 21, 593, 17937, 550969, 16982489, 523857737, 16162268361, 498665065833, 15385785653481, 474713270165161, 14646818304387753, 451913453451818281, 13943354204817352489, 430208763273959521833, 13273677023152591308329, 409546519819086706020393
Offset: 0

Views

Author

Gerhard Kirchner, Mar 17 2022

Keywords

Comments

The sequence is based on A352431.

Examples

			n=1: a(1)=21
The cells in the first row are covered by a horizontal domino, vertical dominoes or a square. The remaining rectangle has 11 (see example A352432) or 5 tilings.
   ___    ___    ___                5 tilings of a 3 X 2 rectangle:
  |___|  | | |  |   |                 ___   ___   ___   ___   ___
  |   |  |_|_|  |___|                |   | |___| |___| | | | |___|
  |   |  |   |  |   |                |___| |   | |___| |_|_| |___|
  | 11|  | 5 |  | 5 |                |___| |___| |___| |___| |_|_|
  |___|  |___|  |___|
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{51, -764, 4822, -13756, 17328, -7680}, {1, 21, 593, 17937, 550969, 16982489}, 17] (* Hugo Pfoertner, Sep 30 2022 *)
  • PARI
    Vec((1-30*x+286*x^2-1084*x^3+1728*x^4-960*x^5)/(1-51*x+764*x^2-4822*x^3+13756*x^4-17328*x^5+7680*x^6)+O(x^99)) \\ Charles R Greathouse IV, Jul 05 2024

Formula

G.f.: (1 - 30*x + 286*x^2 - 1084*x^3 + 1728*x^4 - 960*x^5)/(1 - 51*x + 764*x^2 - 4822*x^3 + 13756*x^4 - 17328*x^5 + 7680*x^6).
a(n) = 51*a(n-1) - 764*a(n-2) + 4822*a(n-3) - 13756*a(n-4) + 17328*a(n-5) - 7680*a(n-6).

A362297 Array read by antidiagonals for k,n>=0: T(n,k) = number of tilings of a 2k X n rectangle using dominos and 2 X 2 right triangles.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 19, 7, 1, 1, 1, 97, 55, 19, 1, 1, 1, 508, 445, 472, 40, 1, 1, 1, 2683, 3625, 13249, 2023, 97, 1, 1, 1, 14209, 29575, 392299, 109771, 13249, 217, 1, 1, 1, 75316, 241375, 11877025, 6078148, 2102272, 66325, 508, 1, 1, 1, 399331, 1970125, 362823607, 338504101, 358815535, 22650721, 392299, 1159, 1
Offset: 0

Views

Author

Gerhard Kirchner, Apr 19 2023

Keywords

Comments

Triangles only occur as pairs forming 2 X 2 squares. Combining four triangles, a square with side sqrt(2) can be made, but this side is irrational and the square cannot be used for tiling. A pair of triangles is equivalent to a 2 X 2 square with a 180 degree rotation symmetry (generated by an ornament for example).

Examples

			Table begins:
n\k_0__1_____2_______3_________4___________5______________6
0:  1  1     1       1         1           1              1
1:  1  1     1       1         1           1              1
2:  1  4    19      97       508        2683          14209
3:  1  7    55     445      3625       29575         241375
4:  1 19   472   13249    392299    11877025      362823607
5:  1 40  2023  109771   6078148   338504101    18883136617
6:  1 97 13249 2102272 358815535 63483562159 11428502939791
		

Crossrefs

Formula

T(n,1) = A006130(n).
T(n,2) = A362298(n).
T(3,k) = A362299(k).
Showing 1-3 of 3 results.