A352524 Irregular triangle read by rows where T(n,k) is the number of integer compositions of n with k excedances (parts above the diagonal), all zeros removed.
1, 1, 1, 1, 2, 2, 3, 5, 6, 9, 1, 11, 18, 3, 21, 35, 8, 41, 67, 20, 80, 131, 44, 1, 157, 257, 94, 4, 310, 505, 197, 12, 614, 996, 406, 32, 1218, 1973, 825, 80, 2421, 3915, 1669, 186, 1, 4819, 7781, 3364, 415, 5, 9602, 15486, 6762, 901, 17, 19147, 30855, 13567, 1918, 49
Offset: 0
Examples
Triangle begins: 1 1 1 1 2 2 3 5 6 9 1 11 18 3 21 35 8 41 67 20 80 131 44 1 157 257 94 4 310 505 197 12 614 996 406 32 For example, row n = 5 counts the following compositions: (113) (5) (23) (122) (14) (1112) (32) (1121) (41) (1211) (131) (11111) (212) (221) (311) (2111)
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..2507 (rows 0..200)
- MathOverflow, Why 'excedances' of permutations? [closed].
Crossrefs
Programs
-
Mathematica
pd[y_]:=Length[Select[Range[Length[y]],#
-
PARI
S(v,u)={vector(#v, k, sum(i=1, k-1, v[k-i]*u[i]))} T(n)={my(v=vector(1+n), s); v[1]=1; s=v; for(i=1, n, v=S(v, vector(n, j, if(j>i,'x,1))); s+=v); [Vecrev(p) | p<-s]} { my(A=T(12)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Jan 02 2023