A352582 Two-column array read by rows, where the n-th row is the least pair of integers (p, q) such that f(p) = f(n) + q*f(n+1) where f(n) = A002496(n) is the n-th prime of the form k^2+1.
3, 3, 11, 76, 49, 2432, 113, 9980, 55, 748, 166, 9420, 384, 39780, 130, 2388, 271, 10640, 867, 82592, 1054, 103040, 548, 11828, 578, 12332, 4874, 1113600, 2461, 196380, 1137, 27932, 2426, 128944, 1393, 35708, 16086, 5861020, 2052, 54268, 9154, 1437780, 7981, 982208
Offset: 1
Examples
The pair (11, 76) is in the sequence because A002496(11) = A002496(2) + 76*A002496(3) and 1297=5+76*17. +----+------+-----+------+---------------------------------------------+ | n | f(n) | p | q | f(p)=f(n)+q*f(n+1) | +----+------+-----+------+----------------------+----------------------+ | 1 | 2 | 3 | 3 | f(3)=f(1)+3*f(2) | 17=2+3*5 | | 2 | 5 | 11 | 76 | f(11)=f(2)+76*f(3) | 1297=5+76*17 | | 3 | 17 | 49 | 2432 | f(49)=f(3)+2432*f(4) | 90001=17+2432*37 | | 4 | 37 | 113 | 9980 | f(113)=f(4)+9980*f(5)| 1008017=37+9980*101 | | 5 | 101 | 55 | 748 | f(55)=f(5)+748*f(6) | 147457=101+748*197 | | 6 | 197 | 166 | 9420 | f(166)=f(6)+9420*f(7)| 2421137=197+9420*257 |
Links
- Michel Lagneau, 90 first pairs (p,q)
Programs
-
Maple
T:=array(1..30000):k:=0: nn:=500000: for m from 1 to nn do: if isprime(m^2+1) then k:=k+1:T[k]:=m^2+1: else fi: od: for n from 1 to 32 do: ii:=0:r:=T[n]:q:=T[n+1]: for i from 1 to k while(ii=0) do: p:=T[i]:r1:=irem(p,q): if r1=r and p>q then ii:=1:x:=(T[i]-T[n])/T[n+1]:printf(`%d, `,i): printf(`%d, `,x): else fi: od: od:
Comments