cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352582 Two-column array read by rows, where the n-th row is the least pair of integers (p, q) such that f(p) = f(n) + q*f(n+1) where f(n) = A002496(n) is the n-th prime of the form k^2+1.

Original entry on oeis.org

3, 3, 11, 76, 49, 2432, 113, 9980, 55, 748, 166, 9420, 384, 39780, 130, 2388, 271, 10640, 867, 82592, 1054, 103040, 548, 11828, 578, 12332, 4874, 1113600, 2461, 196380, 1137, 27932, 2426, 128944, 1393, 35708, 16086, 5861020, 2052, 54268, 9154, 1437780, 7981, 982208
Offset: 1

Views

Author

Michel Lagneau, Mar 21 2022

Keywords

Comments

For given n, it seems there is an infinity of pairs (p,q) = (p0,q0), (p1, q1), (p2, q2), ... where p is the smallest p and q the smallest q: p=p0=min(p0, p1, p2, ...) and q = q0=min(q0, q1, ...).
Conjecture: Given an integer n, there always exists a pair (p, q) such that f(p) = f(n) + q*f(n+1).
Consequence: if the conjecture is true, then the set of prime numbers of the form k^2+1 is infinite because, by induction, there exists a pair (p', q') such that f(p') = f(p-1) + q'*f(p), f(p') > f(p).

Examples

			The pair (11, 76) is in the sequence because A002496(11) = A002496(2) + 76*A002496(3) and 1297=5+76*17.
+----+------+-----+------+---------------------------------------------+
|  n | f(n) |   p |    q |            f(p)=f(n)+q*f(n+1)               |
+----+------+-----+------+----------------------+----------------------+
|  1 |   2  |   3 |    3 | f(3)=f(1)+3*f(2)     |      17=2+3*5        |
|  2 |   5  |  11 |   76 | f(11)=f(2)+76*f(3)   |    1297=5+76*17      |
|  3 |  17  |  49 | 2432 | f(49)=f(3)+2432*f(4) |   90001=17+2432*37   |
|  4 |  37  | 113 | 9980 | f(113)=f(4)+9980*f(5)| 1008017=37+9980*101  |
|  5 | 101  |  55 |  748 | f(55)=f(5)+748*f(6)  |  147457=101+748*197  |
|  6 | 197  | 166 | 9420 | f(166)=f(6)+9420*f(7)| 2421137=197+9420*257 |
		

Crossrefs

Programs

  • Maple
    T:=array(1..30000):k:=0:
    nn:=500000:
      for m from 1 to nn do:
       if isprime(m^2+1)
        then
         k:=k+1:T[k]:=m^2+1:
        else
       fi:
      od:
      for n from 1 to 32 do:
      ii:=0:r:=T[n]:q:=T[n+1]:
       for i from 1 to k while(ii=0) do:
         p:=T[i]:r1:=irem(p,q):
            if r1=r and p>q
             then
             ii:=1:x:=(T[i]-T[n])/T[n+1]:printf(`%d, `,i):
             printf(`%d, `,x):
             else
            fi:
           od:
          od: