A051224
Number of ways of placing n nonattacking superqueens on n X n board (symmetric solutions count only once).
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 22, 239, 653, 4089, 25411, 166463, 1115871, 8062150, 61984976, 497236090, 4261538564, 38352532487, 360400504834, 3518014210402, 35752764285788
Offset: 1
Ulrich Schimke (ulrschimke(AT)aol.com)
- D. E. Knuth, The Art of Computer Programming, Section 7.2.2.3 (draft, March 2022)
a(20) from Bill link added Jul 25 2006
a(21)..a(22) added from Bill's website.
Max Alekseyev, Oct 19 2008
Added formula and a(23)..a(25) derived by formula.
W. Schubert, Nov 29 2009
A352661
Number of doubly symmetric characteristic solutions to the n-superqueens problem.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 12, 17, 0, 0, 60, 82
Offset: 1
For n=12 the a(12)=2 solutions are
+-------------------------+ +-------------------------+
| . . . . A . . . . . . . | | . . . . A . . . . . . . |
| . . . . . . . . . A . . | | . . . . . . . . . A . . |
| . A . . . . . . . . . . | | . A . . . . . . . . . . |
| . . . . . A . . . . . . | | . . . . . . A . . . . . |
| . . . . . . . . . . . A | | . . . . . . . . . . . A |
| . . . . . . . . A . . . | | . . . A . . . . . . . . |
| . . . A . . . . . . . . | | . . . . . . . . A . . . |
| A . . . . . . . . . . . | | A . . . . . . . . . . . |
| . . . . . . A . . . . . | | . . . . . A . . . . . . |
| . . . . . . . . . . A . | | . . . . . . . . . . A . |
| . . A . . . . . . . . . | | . . A . . . . . . . . . |
| . . . . . . . A . . . . | | . . . . . . . A . . . . |
+-------------------------+ +-------------------------+
- Martin Gardner, Fractal Music, Hypercards, and More, W H Freeman, 1991, page 238 (based on his column in Scientific American, June 1979).
- D. E. Knuth, The Art of Computer Programming, Section 7.2.2.3 (draft, March 2022).
A352663
Number of asymmetric characteristic solutions to the n-superqueens problem.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 18, 231, 642, 4040, 25320, 166201, 1115373, 8060958, 61981118, 497224414
Offset: 1
One of the a(11)=5 solutions is
+-----------------------+
| A . . . . . . . . . . |
| . . . . A . . . . . . |
| . . . . . . . . A . . |
| . A . . . . . . . . . |
| . . . . . A . . . . . |
| . . . . . . . . . A . |
| . . A . . . . . . . . |
| . . . . . . A . . . . |
| . . . . . . . . . . A |
| . . . A . . . . . . . |
| . . . . . . . A . . . |
+-----------------------+
and the other four are obtained by wraparound shifts.
- D. E. Knuth, The Art of Computer Programming, Section 7.2.2.3 (draft, March 2022).
Showing 1-3 of 3 results.
Comments