cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A051223 Number of ways of placing n nonattacking superqueens on an n X n board.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 4, 44, 156, 1876, 5180, 32516, 202900, 1330622, 8924976, 64492432, 495864256, 3977841852, 34092182276, 306819842212, 2883202816808, 28144109776812, 286022102245804
Offset: 1

Views

Author

Ulrich Schimke (ulrschimke(AT)aol.com)

Keywords

Comments

A superqueen moves like a queen and a knight.
A linear-time algorithm giving an explicit solution for any n >= 10 for the n-super-queens-problem can be found at the link. Included is an online solver, implemented in JavaScript. - Frank Schwellinger (nummer_eins(AT)web.de), Mar 19 2004. [But see the next comment - N. J. A. Sloane, Jul 01 2021]
Escamocher and O'Sullivan (2021) claim Schwellinger's algorithm is incorrect, and that their own algorithm is the first published linear-time algorithm. - N. J. A. Sloane, Jul 01 2021

Crossrefs

Extensions

a(20) from Bill link added Jul 25 2006
a(21)-a(23) from R. Oprisch's website added by Max Alekseyev, Sep 29 2006
a(24)-a(26) from W. Schubert, Jul 31 2009, Nov 29 2009, Jan 18 2011

A102388 Number of ways of placing n nonattacking Queens of the Night on an n X n board.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 4, 44, 6, 78, 8, 16, 18, 234, 124, 468, 516, 882, 2092, 7068, 22794, 85456, 275732, 974048, 3698242, 14120996, 59531852, 252272512, 1163430462, 5229335374
Offset: 1

Views

Author

Stefan Wernli, Peter Syski (swernli(AT)fas.harvard.edu), Jan 07 2005

Keywords

Comments

A Queen of the Night can move like a Queen or a Nightrider, which is a rider along straight lines of Knight moves.

Crossrefs

Extensions

Terms a(20)-a(28) from Vaclav Kotesovec, Jun 18 2010 and Feb 02 2011
Terms a(29)-a(32) from Wolfram Schubert, Jul 24 2011
Term a(33) from Wolfram Schubert, May 27 2012

A172200 Number of ways to place 2 nonattacking amazons (superqueens) on an n X n board.

Original entry on oeis.org

0, 0, 0, 20, 92, 260, 580, 1120, 1960, 3192, 4920, 7260, 10340, 14300, 19292, 25480, 33040, 42160, 53040, 65892, 80940, 98420, 118580, 141680, 167992, 197800, 231400, 269100, 311220, 358092, 410060, 467480, 530720, 600160, 676192, 759220, 849660
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 29 2010

Keywords

Comments

A amazon (superqueen) moves like a queen and a knight.

References

  • Christian Poisson, Echecs et mathematiques, Rex Multiplex 29/1990, p.829

Crossrefs

Programs

  • Magma
    [(n-1)*(n-2)*(n-3)*(3*n+8)/6: n in [1..50]]; // Vincenzo Librandi, May 27 2013
    
  • Mathematica
    CoefficientList[Series[4x^3(5-2x)/(1-x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, May 27 2013 *)
    LinearRecurrence[{5,-10,10,-5,1},{0,0,0,20,92},40] (* or *) Table[(n-1)(n-2)(n-3)(3n+8)/6,{n,40}] (* Harvey P. Dale, May 16 2021 *)
  • SageMath
    [binomial(n-1,3)*(3*n+8) for n in (1..50)] # G. C. Greubel, Apr 28 2022

Formula

Explicit formula (Christian Poisson, 1990): a(n) = (n - 1)(n - 2)(n - 3)(3n + 8)/6.
G.f.: 4*x^4*(5-2*x)/(1-x)^5. - Colin Barker, Jan 09 2013
E.g.f.: 8 + (1/6)*(-48 +48*x -24*x^2 +8*x^3 +3*x^4)*exp(x). - G. C. Greubel, Apr 28 2022

A172201 Number of ways to place 3 nonattacking amazons (superqueens) on an n X n board.

Original entry on oeis.org

0, 0, 0, 0, 48, 424, 1976, 6616, 17852, 41544, 86660, 166288, 298616, 508200, 827168, 1296744, 1968676, 2907016, 4189772, 5910944, 8182400, 11136168, 14926536, 19732600, 25760588, 33246664, 42459476, 53703216, 67320392, 83695144
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 29 2010

Keywords

Comments

An amazon (superqueen) moves like a queen and a knight.

References

  • Panos Louridas, idee & form 93/2007, pp. 2936-2938.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); [0,0,0,0] cat Coefficients(R!( 4*x^5*(12+46*x+60*x^2+32*x^3-23*x^4-13*x^5+7*x^6-x^7)/((1+x)^2*(1-x)^7 ))); // G. C. Greubel, Apr 29 2022
    
  • Mathematica
    CoefficientList[Series[4*x^5*(12+46*x+60*x^2+32*x^3-23*x^4-13*x^5+7*x^6-x^7)/((1+x)^2*(1-x)^7), {x, 0, 40}], x] (* Vincenzo Librandi, May 27 2013 *)
  • SageMath
    [(1/24)*(4*n^6 -40*n^5 +62*n^4 +628*n^3 -2904*n^2 +4074*n -1341 +3*(-1)^n*(2*n-1)) -4*(5*bool(n==1) +2*bool(n==2) -bool(n==3)) for n in (1..40)] # G. C. Greubel, Apr 29 2022

Formula

Explicit formula (Panos Louridas, 2007): a(n) = (2*n^6 - 20*n^5 + 31*n^4 + 314*n^3 - 1452*n^2 + 2040*n - 672)/12 if n is even (n >= 4) and a(n) = (2*n^6 - 20*n^5 + 31*n^4 + 314*n^3 - 1452*n^2 + 2034*n - 669)/12 if n is odd (n >= 5).
G.f.: 4*x^5*(12+46*x+60*x^2+32*x^3-23*x^4-13*x^5+7*x^6-x^7)/((1+x)^2*(1-x)^7). - Vaclav Kotesovec, Mar 24 2010
a(n) = (1/24)*(4*n^6 - 40*n^5 + 62*n^4 + 628*n^3 - 2904*n^2 + 4074*n - 1341 + 3*(-1)^n*(2*n-1)) - 20*[n=1] - 8*[n=2] + 4*[n=3]. - G. C. Greubel, Apr 29 2022

A174642 Number of ways to place 4 nonattacking amazons (superqueens) on a 4 X n board.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 12, 60, 180, 432, 900, 1692, 2940, 4800, 7452, 11100, 15972, 22320, 30420, 40572, 53100, 68352, 86700, 108540, 134292, 164400, 199332, 239580, 285660, 338112, 397500, 464412, 539460, 623280, 716532, 819900, 934092, 1059840
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 25 2010

Keywords

Comments

An amazon (superqueen) moves like a queen and a knight

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[- 12 x^7 (x^3 + 1) / (x - 1)^5, {x, 0, 50}], x] (* Vincenzo Librandi, May 30 2013 *)

Formula

G.f.: -12*x^8*(x^3+1)/(x-1)^5.
Explicit formula: a(n) = (n-7)(n^3-21n^2+158n-420), n>=7.

Extensions

More terms from Vincenzo Librandi, May 30 2013

A352661 Number of doubly symmetric characteristic solutions to the n-superqueens problem.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 12, 17, 0, 0, 60, 82
Offset: 1

Views

Author

Don Knuth, Mar 25 2022

Keywords

Comments

Superqueens are also called amazons. They combine the moves of queen and knight.

Examples

			For n=12 the a(12)=2 solutions are
  +-------------------------+ +-------------------------+
  | . . . . A . . . . . . . | | . . . . A . . . . . . . |
  | . . . . . . . . . A . . | | . . . . . . . . . A . . |
  | . A . . . . . . . . . . | | . A . . . . . . . . . . |
  | . . . . . A . . . . . . | | . . . . . . A . . . . . |
  | . . . . . . . . . . . A | | . . . . . . . . . . . A |
  | . . . . . . . . A . . . | | . . . A . . . . . . . . |
  | . . . A . . . . . . . . | | . . . . . . . . A . . . |
  | A . . . . . . . . . . . | | A . . . . . . . . . . . |
  | . . . . . . A . . . . . | | . . . . . A . . . . . . |
  | . . . . . . . . . . A . | | . . . . . . . . . . A . |
  | . . A . . . . . . . . . | | . . A . . . . . . . . . |
  | . . . . . . . A . . . . | | . . . . . . . A . . . . |
  +-------------------------+ +-------------------------+
		

References

  • Martin Gardner, Fractal Music, Hypercards, and More, W H Freeman, 1991, page 238 (based on his column in Scientific American, June 1979).
  • D. E. Knuth, The Art of Computer Programming, Section 7.2.2.3 (draft, March 2022).

Crossrefs

A051223 = 2*A352661 + 4*A352662 + 8*A352663 (when n>1).

A352662 Number of singly symmetric characteristic solutions to the n-superqueens problem.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 6, 11, 49, 79, 245, 498, 1192, 3798, 11594
Offset: 1

Views

Author

Don Knuth, Mar 25 2022

Keywords

Comments

Superqueens are also called amazons. They combine the moves of queen and knight.

Examples

			For n=10 the a(10)=1 solution is
  +---------------------+
  | . . . A . . . . . . |
  | . . . . . . . A . . |
  | A . . . . . . . . . |
  | . . . . A . . . . . |
  | . . . . . . . . A . |
  | . A . . . . . . . . |
  | . . . . . A . . . . |
  | . . . . . . . . . A |
  | . . A . . . . . . . |
  | . . . . . . A . . . |
  +---------------------+
		

References

  • D. E. Knuth, The Art of Computer Programming, Section 7.2.2.3 (draft, March 2022).

Crossrefs

A352663 Number of asymmetric characteristic solutions to the n-superqueens problem.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 18, 231, 642, 4040, 25320, 166201, 1115373, 8060958, 61981118, 497224414
Offset: 1

Views

Author

Don Knuth, Mar 25 2022

Keywords

Examples

			One of the a(11)=5 solutions is
  +-----------------------+
  | A . . . . . . . . . . |
  | . . . . A . . . . . . |
  | . . . . . . . . A . . |
  | . A . . . . . . . . . |
  | . . . . . A . . . . . |
  | . . . . . . . . . A . |
  | . . A . . . . . . . . |
  | . . . . . . A . . . . |
  | . . . . . . . . . . A |
  | . . . A . . . . . . . |
  | . . . . . . . A . . . |
  +-----------------------+
and the other four are obtained by wraparound shifts.
		

References

  • D. E. Knuth, The Art of Computer Programming, Section 7.2.2.3 (draft, March 2022).

Crossrefs

A007631 Number of solutions to non-attacking reflecting queens problem.

Original entry on oeis.org

1, 1, 0, 0, 2, 4, 0, 2, 10, 32, 38, 140, 496, 1186, 3178, 16792, 82038, 289566, 1139874, 5914118, 33800010, 142337180, 721286448, 4384569864
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of ways to pair the natural numbers from 1 to n with those between n+1 and 2*n into n pairs (xi,yi) such that the 2*n numbers yi+i and yi-i are all different. - Michel Marcus, Apr 27 2016

Examples

			For n = 4, ((1,7), (2,5), (3,8), (4,6)) is an instance of such grouping. ((2,5), (1,7), (3,8), (4,6)) is considered to be the same grouping.
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • PARI
    a(n) = {nb = 0; for (j=0, n!-1, vp = numtoperm(n, j); vb = vector(n, k, vp[k]+n); vs = vector(n, k, vb[k]+k); vd = vector(n, k, vb[k]-k); if (#vs + #vd == #Set(concat(vs, vd)), nb++); ); nb; } \\ Michel Marcus,  Apr 27 2016

Extensions

a(18)-a(21) from Sean A. Irvine, Jan 13 2018
a(0)-a(3) prepended by Michel Marcus, Oct 03 2018
a(22) from Sean A. Irvine, Oct 04 2018
a(23) from Sean A. Irvine, Oct 07 2018
Showing 1-9 of 9 results.