cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 24 results. Next

A137774 Number of ways to place n nonattacking empresses on an n X n board.

Original entry on oeis.org

1, 2, 2, 8, 20, 94, 438, 2766, 19480, 163058, 1546726, 16598282, 197708058, 2586423174, 36769177348, 563504645310, 9248221393974, 161670971937362, 2996936692836754, 58689061747521430, 1210222434323163704, 26204614054454840842, 594313769819021397534, 14086979362268860896282
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 27 2011

Keywords

Comments

An empress moves like a rook and a knight.

Crossrefs

Formula

Asymptotics (Vaclav Kotesovec, Jan 26 2011): a(n)/n! -> 1/e^4.
General asymptotic formulas for number of ways to place n nonattacking pieces rook + leaper[r,s] on an n X n board:
a(n)/n! -> 1/e^2 for 0
a(n)/n! -> 1/e^4 for 0

Extensions

Terms a(16)-a(17) from Vaclav Kotesovec, Feb 06 2011
Terms a(18)-a(19) from Wolfram Schubert, Jul 24 2011
Terms a(20)-a(24) (computed by Wolfram Schubert), Vaclav Kotesovec, Aug 25 2012

A102388 Number of ways of placing n nonattacking Queens of the Night on an n X n board.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 4, 44, 6, 78, 8, 16, 18, 234, 124, 468, 516, 882, 2092, 7068, 22794, 85456, 275732, 974048, 3698242, 14120996, 59531852, 252272512, 1163430462, 5229335374
Offset: 1

Author

Stefan Wernli, Peter Syski (swernli(AT)fas.harvard.edu), Jan 07 2005

Keywords

Comments

A Queen of the Night can move like a Queen or a Nightrider, which is a rider along straight lines of Knight moves.

Crossrefs

Extensions

Terms a(20)-a(28) from Vaclav Kotesovec, Jun 18 2010 and Feb 02 2011
Terms a(29)-a(32) from Wolfram Schubert, Jul 24 2011
Term a(33) from Wolfram Schubert, May 27 2012

A051224 Number of ways of placing n nonattacking superqueens on n X n board (symmetric solutions count only once).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 22, 239, 653, 4089, 25411, 166463, 1115871, 8062150, 61984976, 497236090, 4261538564, 38352532487, 360400504834, 3518014210402, 35752764285788
Offset: 1

Author

Ulrich Schimke (ulrschimke(AT)aol.com)

Keywords

Comments

A superqueen moves like a queen and a knight.
Superqueens are also called amazons.

References

  • D. E. Knuth, The Art of Computer Programming, Section 7.2.2.3 (draft, March 2022)

Crossrefs

Formula

a(n) = (1/8) * (Q(n) + P(n) + 2 * R(n)), where Q(n) = A051223(n) [all solutions], P(n) [point symmetric solutions (180 degrees)] and R(n) [rotationally symmetric solutions (90 degrees)]. This formula has the same structure as the formula for A002562. There seem to be no OEIS sequences (yet) for P(n) and R(n). See the N-Queens page link. - W. Schubert, Nov 29 2009

Extensions

a(20) from Bill link added Jul 25 2006
a(21)..a(22) added from Bill's website. Max Alekseyev, Oct 19 2008
Added formula and a(23)..a(25) derived by formula. W. Schubert, Nov 29 2009
Added a(26). W. Schubert, Jan 18 2011

A172200 Number of ways to place 2 nonattacking amazons (superqueens) on an n X n board.

Original entry on oeis.org

0, 0, 0, 20, 92, 260, 580, 1120, 1960, 3192, 4920, 7260, 10340, 14300, 19292, 25480, 33040, 42160, 53040, 65892, 80940, 98420, 118580, 141680, 167992, 197800, 231400, 269100, 311220, 358092, 410060, 467480, 530720, 600160, 676192, 759220, 849660
Offset: 1

Author

Vaclav Kotesovec, Jan 29 2010

Keywords

Comments

A amazon (superqueen) moves like a queen and a knight.

References

  • Christian Poisson, Echecs et mathematiques, Rex Multiplex 29/1990, p.829

Crossrefs

Programs

  • Magma
    [(n-1)*(n-2)*(n-3)*(3*n+8)/6: n in [1..50]]; // Vincenzo Librandi, May 27 2013
    
  • Mathematica
    CoefficientList[Series[4x^3(5-2x)/(1-x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, May 27 2013 *)
    LinearRecurrence[{5,-10,10,-5,1},{0,0,0,20,92},40] (* or *) Table[(n-1)(n-2)(n-3)(3n+8)/6,{n,40}] (* Harvey P. Dale, May 16 2021 *)
  • SageMath
    [binomial(n-1,3)*(3*n+8) for n in (1..50)] # G. C. Greubel, Apr 28 2022

Formula

Explicit formula (Christian Poisson, 1990): a(n) = (n - 1)(n - 2)(n - 3)(3n + 8)/6.
G.f.: 4*x^4*(5-2*x)/(1-x)^5. - Colin Barker, Jan 09 2013
E.g.f.: 8 + (1/6)*(-48 +48*x -24*x^2 +8*x^3 +3*x^4)*exp(x). - G. C. Greubel, Apr 28 2022

A225553 Longest checkmate in king and amazon versus king endgame on an n X n chessboard.

Original entry on oeis.org

0, 1, 2, 3, 4, 4, 5, 5, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21
Offset: 3

Author

Vaclav Kotesovec, May 10 2013

Keywords

Comments

An amazon (superqueen) moves like a queen and a knight.

Examples

			Longest win on an 8x8 chessboard: Ka1 AMb1 - Kd4, 1.AMb1-f5! Kd4-c4! 2.Ka1-b1 Kc4-b4! 3.Kb1-b2 Kb4-a4 4.AMf5-c5#, therefore a(8) = 4.
		

Formula

Conjecture: for n > 10, a(n) = floor((n+2)/2).
Empirical g.f.: -x^4*(x^9-x^8+x^4-x-1) / ((x-1)^2*(x+1)). - Colin Barker, May 11 2013

A172201 Number of ways to place 3 nonattacking amazons (superqueens) on an n X n board.

Original entry on oeis.org

0, 0, 0, 0, 48, 424, 1976, 6616, 17852, 41544, 86660, 166288, 298616, 508200, 827168, 1296744, 1968676, 2907016, 4189772, 5910944, 8182400, 11136168, 14926536, 19732600, 25760588, 33246664, 42459476, 53703216, 67320392, 83695144
Offset: 1

Author

Vaclav Kotesovec, Jan 29 2010

Keywords

Comments

An amazon (superqueen) moves like a queen and a knight.

References

  • Panos Louridas, idee & form 93/2007, pp. 2936-2938.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); [0,0,0,0] cat Coefficients(R!( 4*x^5*(12+46*x+60*x^2+32*x^3-23*x^4-13*x^5+7*x^6-x^7)/((1+x)^2*(1-x)^7 ))); // G. C. Greubel, Apr 29 2022
    
  • Mathematica
    CoefficientList[Series[4*x^5*(12+46*x+60*x^2+32*x^3-23*x^4-13*x^5+7*x^6-x^7)/((1+x)^2*(1-x)^7), {x, 0, 40}], x] (* Vincenzo Librandi, May 27 2013 *)
  • SageMath
    [(1/24)*(4*n^6 -40*n^5 +62*n^4 +628*n^3 -2904*n^2 +4074*n -1341 +3*(-1)^n*(2*n-1)) -4*(5*bool(n==1) +2*bool(n==2) -bool(n==3)) for n in (1..40)] # G. C. Greubel, Apr 29 2022

Formula

Explicit formula (Panos Louridas, 2007): a(n) = (2*n^6 - 20*n^5 + 31*n^4 + 314*n^3 - 1452*n^2 + 2040*n - 672)/12 if n is even (n >= 4) and a(n) = (2*n^6 - 20*n^5 + 31*n^4 + 314*n^3 - 1452*n^2 + 2034*n - 669)/12 if n is odd (n >= 5).
G.f.: 4*x^5*(12+46*x+60*x^2+32*x^3-23*x^4-13*x^5+7*x^6-x^7)/((1+x)^2*(1-x)^7). - Vaclav Kotesovec, Mar 24 2010
a(n) = (1/24)*(4*n^6 - 40*n^5 + 62*n^4 + 628*n^3 - 2904*n^2 + 4074*n - 1341 + 3*(-1)^n*(2*n-1)) - 20*[n=1] - 8*[n=2] + 4*[n=3]. - G. C. Greubel, Apr 29 2022

A174642 Number of ways to place 4 nonattacking amazons (superqueens) on a 4 X n board.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 12, 60, 180, 432, 900, 1692, 2940, 4800, 7452, 11100, 15972, 22320, 30420, 40572, 53100, 68352, 86700, 108540, 134292, 164400, 199332, 239580, 285660, 338112, 397500, 464412, 539460, 623280, 716532, 819900, 934092, 1059840
Offset: 1

Author

Vaclav Kotesovec, Mar 25 2010

Keywords

Comments

An amazon (superqueen) moves like a queen and a knight

Programs

  • Mathematica
    CoefficientList[Series[- 12 x^7 (x^3 + 1) / (x - 1)^5, {x, 0, 50}], x] (* Vincenzo Librandi, May 30 2013 *)

Formula

G.f.: -12*x^8*(x^3+1)/(x-1)^5.
Explicit formula: a(n) = (n-7)(n^3-21n^2+158n-420), n>=7.

Extensions

More terms from Vincenzo Librandi, May 30 2013

A352661 Number of doubly symmetric characteristic solutions to the n-superqueens problem.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 12, 17, 0, 0, 60, 82
Offset: 1

Author

Don Knuth, Mar 25 2022

Keywords

Comments

Superqueens are also called amazons. They combine the moves of queen and knight.

Examples

			For n=12 the a(12)=2 solutions are
  +-------------------------+ +-------------------------+
  | . . . . A . . . . . . . | | . . . . A . . . . . . . |
  | . . . . . . . . . A . . | | . . . . . . . . . A . . |
  | . A . . . . . . . . . . | | . A . . . . . . . . . . |
  | . . . . . A . . . . . . | | . . . . . . A . . . . . |
  | . . . . . . . . . . . A | | . . . . . . . . . . . A |
  | . . . . . . . . A . . . | | . . . A . . . . . . . . |
  | . . . A . . . . . . . . | | . . . . . . . . A . . . |
  | A . . . . . . . . . . . | | A . . . . . . . . . . . |
  | . . . . . . A . . . . . | | . . . . . A . . . . . . |
  | . . . . . . . . . . A . | | . . . . . . . . . . A . |
  | . . A . . . . . . . . . | | . . A . . . . . . . . . |
  | . . . . . . . A . . . . | | . . . . . . . A . . . . |
  +-------------------------+ +-------------------------+
		

References

  • Martin Gardner, Fractal Music, Hypercards, and More, W H Freeman, 1991, page 238 (based on his column in Scientific American, June 1979).
  • D. E. Knuth, The Art of Computer Programming, Section 7.2.2.3 (draft, March 2022).

Crossrefs

A051223 = 2*A352661 + 4*A352662 + 8*A352663 (when n>1).

A189864 Number of ways to place n nonattacking composite pieces queen + leaper[1,3] on an n X n chessboard.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 4, 56, 176, 1932, 4188, 26960, 182456, 1132064, 7645784, 58695136, 470822912, 3792417988, 32440237692
Offset: 1

Author

Vaclav Kotesovec, Apr 29 2011

Keywords

Comments

(In fairy chess, the leaper [1,3] is called a camel.)
a(n) is also the number of permutations p of 1,2,...,n satisfying |p(i+1) - p(i)| <> 3 AND |p(j+3) - p(j)| <> 1 AND |p(m+k) - p(m)| <> k for all i >= 1, j >= 1, m >= 1, k >= 1, i+1 <= n, j+3 <= n, m+k <= n.

Crossrefs

A189865 Number of ways to place n nonattacking composite pieces queen + leaper[1,4] on an n X n chessboard.

Original entry on oeis.org

1, 0, 0, 2, 10, 0, 0, 4, 32, 76, 196, 632, 3368, 12532, 79788, 468286, 2815088, 18287968, 126620984, 938037664, 7232141830, 59774887344
Offset: 1

Author

Vaclav Kotesovec, Apr 29 2011

Keywords

Comments

In fairy chess the leaper [1,4] is called a giraffe.
a(n) is also number of permutations p of 1,2,...,n satisfying |p(i+1)-p(i)|<>4 AND |p(j+4)-p(j)|<>1 AND |p(m+k)-p(m)|<>k for all i>=1, j>=1, m>=1, k>=1, i+1<=n, j+4<=n, m+k<=n

Crossrefs

Showing 1-10 of 24 results. Next