A137774 Number of ways to place n nonattacking empresses on an n X n board.
1, 2, 2, 8, 20, 94, 438, 2766, 19480, 163058, 1546726, 16598282, 197708058, 2586423174, 36769177348, 563504645310, 9248221393974, 161670971937362, 2996936692836754, 58689061747521430, 1210222434323163704, 26204614054454840842, 594313769819021397534, 14086979362268860896282
Offset: 1
Links
- Eli Bagno, Estrella Eisenberg, Shulamit Reches, and Moriah Sigron, Separators - a new statistic for permutations, arXiv:1905.12364 [math.CO], 2019.
- Eli Bagno, Estrella Eisenberg, Shulamit Reches, and Moriah Sigron, On the Sparseness of the Downsets of Permutations via Their Number of Separators, Enumerative Combinatorics and Applications (2021) Vol. 1, No. 3, Article #S2R21.
- Vaclav Kotesovec, Non-attacking chess pieces, 6ed, 2013, p.685 and 636.
- W. Schubert, N-Queens page
Crossrefs
Formula
Asymptotics (Vaclav Kotesovec, Jan 26 2011): a(n)/n! -> 1/e^4.
General asymptotic formulas for number of ways to place n nonattacking pieces rook + leaper[r,s] on an n X n board:
a(n)/n! -> 1/e^2 for 0
a(n)/n! -> 1/e^4 for 0
Extensions
Terms a(16)-a(17) from Vaclav Kotesovec, Feb 06 2011
Terms a(18)-a(19) from Wolfram Schubert, Jul 24 2011
Terms a(20)-a(24) (computed by Wolfram Schubert), Vaclav Kotesovec, Aug 25 2012
A102388 Number of ways of placing n nonattacking Queens of the Night on an n X n board.
1, 0, 0, 0, 0, 0, 0, 0, 0, 4, 44, 6, 78, 8, 16, 18, 234, 124, 468, 516, 882, 2092, 7068, 22794, 85456, 275732, 974048, 3698242, 14120996, 59531852, 252272512, 1163430462, 5229335374
Offset: 1
Comments
A Queen of the Night can move like a Queen or a Nightrider, which is a rider along straight lines of Knight moves.
Links
- Noam D. Elkies, Chess Pages and Links.
- P. Syski, S. J. Wernli, Queen of the Night on an n X n board.
- V. Kotesovec, Non-attacking chess pieces, 6ed, 2013, p. 350.
- W. Schubert, N-Queens page.
Extensions
Terms a(20)-a(28) from Vaclav Kotesovec, Jun 18 2010 and Feb 02 2011
Terms a(29)-a(32) from Wolfram Schubert, Jul 24 2011
Term a(33) from Wolfram Schubert, May 27 2012
A051224 Number of ways of placing n nonattacking superqueens on n X n board (symmetric solutions count only once).
1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 22, 239, 653, 4089, 25411, 166463, 1115871, 8062150, 61984976, 497236090, 4261538564, 38352532487, 360400504834, 3518014210402, 35752764285788
Offset: 1
Comments
A superqueen moves like a queen and a knight.
Superqueens are also called amazons.
References
- D. E. Knuth, The Art of Computer Programming, Section 7.2.2.3 (draft, March 2022)
Links
- D. Bill, Durango Bill's The N-Queens Problem
- W. Schubert, N-Queens page
Formula
a(n) = (1/8) * (Q(n) + P(n) + 2 * R(n)), where Q(n) = A051223(n) [all solutions], P(n) [point symmetric solutions (180 degrees)] and R(n) [rotationally symmetric solutions (90 degrees)]. This formula has the same structure as the formula for A002562. There seem to be no OEIS sequences (yet) for P(n) and R(n). See the N-Queens page link. - W. Schubert, Nov 29 2009
Extensions
a(20) from Bill link added Jul 25 2006
a(21)..a(22) added from Bill's website. Max Alekseyev, Oct 19 2008
Added formula and a(23)..a(25) derived by formula. W. Schubert, Nov 29 2009
Added a(26). W. Schubert, Jan 18 2011
A172200 Number of ways to place 2 nonattacking amazons (superqueens) on an n X n board.
0, 0, 0, 20, 92, 260, 580, 1120, 1960, 3192, 4920, 7260, 10340, 14300, 19292, 25480, 33040, 42160, 53040, 65892, 80940, 98420, 118580, 141680, 167992, 197800, 231400, 269100, 311220, 358092, 410060, 467480, 530720, 600160, 676192, 759220, 849660
Offset: 1
Comments
A amazon (superqueen) moves like a queen and a knight.
References
- Christian Poisson, Echecs et mathematiques, Rex Multiplex 29/1990, p.829
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Vaclav Kotesovec, Number of ways of placing non-attacking queens and kings on boards of various sizes
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
Magma
[(n-1)*(n-2)*(n-3)*(3*n+8)/6: n in [1..50]]; // Vincenzo Librandi, May 27 2013
-
Mathematica
CoefficientList[Series[4x^3(5-2x)/(1-x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, May 27 2013 *) LinearRecurrence[{5,-10,10,-5,1},{0,0,0,20,92},40] (* or *) Table[(n-1)(n-2)(n-3)(3n+8)/6,{n,40}] (* Harvey P. Dale, May 16 2021 *)
-
SageMath
[binomial(n-1,3)*(3*n+8) for n in (1..50)] # G. C. Greubel, Apr 28 2022
Formula
Explicit formula (Christian Poisson, 1990): a(n) = (n - 1)(n - 2)(n - 3)(3n + 8)/6.
G.f.: 4*x^4*(5-2*x)/(1-x)^5. - Colin Barker, Jan 09 2013
E.g.f.: 8 + (1/6)*(-48 +48*x -24*x^2 +8*x^3 +3*x^4)*exp(x). - G. C. Greubel, Apr 28 2022
A225553 Longest checkmate in king and amazon versus king endgame on an n X n chessboard.
0, 1, 2, 3, 4, 4, 5, 5, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21
Offset: 3
Keywords
Comments
An amazon (superqueen) moves like a queen and a knight.
Examples
Longest win on an 8x8 chessboard: Ka1 AMb1 - Kd4, 1.AMb1-f5! Kd4-c4! 2.Ka1-b1 Kc4-b4! 3.Kb1-b2 Kb4-a4 4.AMf5-c5#, therefore a(8) = 4.
Links
- V. Kotesovec, King and Two Generalised Knights against King, ICGA Journal, Vol. 24, No. 2, pp. 105-107 (2001)
- V. Kotesovec, Fairy chess endings on an n x n chessboard, Electronic edition of chess booklets by Vaclav Kotesovec, vol. 8, p.364 (2013), p. 544 (second edition, 2017).
Crossrefs
Formula
Conjecture: for n > 10, a(n) = floor((n+2)/2).
Empirical g.f.: -x^4*(x^9-x^8+x^4-x-1) / ((x-1)^2*(x+1)). - Colin Barker, May 11 2013
A172201 Number of ways to place 3 nonattacking amazons (superqueens) on an n X n board.
0, 0, 0, 0, 48, 424, 1976, 6616, 17852, 41544, 86660, 166288, 298616, 508200, 827168, 1296744, 1968676, 2907016, 4189772, 5910944, 8182400, 11136168, 14926536, 19732600, 25760588, 33246664, 42459476, 53703216, 67320392, 83695144
Offset: 1
Comments
An amazon (superqueen) moves like a queen and a knight.
References
- Panos Louridas, idee & form 93/2007, pp. 2936-2938.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Vaclav Kotesovec, Number of ways of placing non-attacking queens and kings on boards of various sizes
- Index entries for linear recurrences with constant coefficients, signature (5,-8,0,14,-14,0,8,-5,1).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 40); [0,0,0,0] cat Coefficients(R!( 4*x^5*(12+46*x+60*x^2+32*x^3-23*x^4-13*x^5+7*x^6-x^7)/((1+x)^2*(1-x)^7 ))); // G. C. Greubel, Apr 29 2022 -
Mathematica
CoefficientList[Series[4*x^5*(12+46*x+60*x^2+32*x^3-23*x^4-13*x^5+7*x^6-x^7)/((1+x)^2*(1-x)^7), {x, 0, 40}], x] (* Vincenzo Librandi, May 27 2013 *)
-
SageMath
[(1/24)*(4*n^6 -40*n^5 +62*n^4 +628*n^3 -2904*n^2 +4074*n -1341 +3*(-1)^n*(2*n-1)) -4*(5*bool(n==1) +2*bool(n==2) -bool(n==3)) for n in (1..40)] # G. C. Greubel, Apr 29 2022
Formula
Explicit formula (Panos Louridas, 2007): a(n) = (2*n^6 - 20*n^5 + 31*n^4 + 314*n^3 - 1452*n^2 + 2040*n - 672)/12 if n is even (n >= 4) and a(n) = (2*n^6 - 20*n^5 + 31*n^4 + 314*n^3 - 1452*n^2 + 2034*n - 669)/12 if n is odd (n >= 5).
G.f.: 4*x^5*(12+46*x+60*x^2+32*x^3-23*x^4-13*x^5+7*x^6-x^7)/((1+x)^2*(1-x)^7). - Vaclav Kotesovec, Mar 24 2010
a(n) = (1/24)*(4*n^6 - 40*n^5 + 62*n^4 + 628*n^3 - 2904*n^2 + 4074*n - 1341 + 3*(-1)^n*(2*n-1)) - 20*[n=1] - 8*[n=2] + 4*[n=3]. - G. C. Greubel, Apr 29 2022
A174642 Number of ways to place 4 nonattacking amazons (superqueens) on a 4 X n board.
0, 0, 0, 0, 0, 0, 0, 12, 60, 180, 432, 900, 1692, 2940, 4800, 7452, 11100, 15972, 22320, 30420, 40572, 53100, 68352, 86700, 108540, 134292, 164400, 199332, 239580, 285660, 338112, 397500, 464412, 539460, 623280, 716532, 819900, 934092, 1059840
Offset: 1
Comments
An amazon (superqueen) moves like a queen and a knight
Links
Programs
-
Mathematica
CoefficientList[Series[- 12 x^7 (x^3 + 1) / (x - 1)^5, {x, 0, 50}], x] (* Vincenzo Librandi, May 30 2013 *)
Formula
G.f.: -12*x^8*(x^3+1)/(x-1)^5.
Explicit formula: a(n) = (n-7)(n^3-21n^2+158n-420), n>=7.
Extensions
More terms from Vincenzo Librandi, May 30 2013
A352661 Number of doubly symmetric characteristic solutions to the n-superqueens problem.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 12, 17, 0, 0, 60, 82
Offset: 1
Comments
Superqueens are also called amazons. They combine the moves of queen and knight.
Examples
For n=12 the a(12)=2 solutions are +-------------------------+ +-------------------------+ | . . . . A . . . . . . . | | . . . . A . . . . . . . | | . . . . . . . . . A . . | | . . . . . . . . . A . . | | . A . . . . . . . . . . | | . A . . . . . . . . . . | | . . . . . A . . . . . . | | . . . . . . A . . . . . | | . . . . . . . . . . . A | | . . . . . . . . . . . A | | . . . . . . . . A . . . | | . . . A . . . . . . . . | | . . . A . . . . . . . . | | . . . . . . . . A . . . | | A . . . . . . . . . . . | | A . . . . . . . . . . . | | . . . . . . A . . . . . | | . . . . . A . . . . . . | | . . . . . . . . . . A . | | . . . . . . . . . . A . | | . . A . . . . . . . . . | | . . A . . . . . . . . . | | . . . . . . . A . . . . | | . . . . . . . A . . . . | +-------------------------+ +-------------------------+
References
- Martin Gardner, Fractal Music, Hypercards, and More, W H Freeman, 1991, page 238 (based on his column in Scientific American, June 1979).
- D. E. Knuth, The Art of Computer Programming, Section 7.2.2.3 (draft, March 2022).
A189864 Number of ways to place n nonattacking composite pieces queen + leaper[1,3] on an n X n chessboard.
1, 0, 0, 0, 0, 0, 0, 0, 0, 4, 56, 176, 1932, 4188, 26960, 182456, 1132064, 7645784, 58695136, 470822912, 3792417988, 32440237692
Offset: 1
Comments
(In fairy chess, the leaper [1,3] is called a camel.)
a(n) is also the number of permutations p of 1,2,...,n satisfying |p(i+1) - p(i)| <> 3 AND |p(j+3) - p(j)| <> 1 AND |p(m+k) - p(m)| <> k for all i >= 1, j >= 1, m >= 1, k >= 1, i+1 <= n, j+3 <= n, m+k <= n.
Links
- V. Kotesovec, Number of ways of placing non-attacking queens, kings, bishops and knights (in English and Czech).
- Wikipedia, Fairy chess piece.
A189865 Number of ways to place n nonattacking composite pieces queen + leaper[1,4] on an n X n chessboard.
1, 0, 0, 2, 10, 0, 0, 4, 32, 76, 196, 632, 3368, 12532, 79788, 468286, 2815088, 18287968, 126620984, 938037664, 7232141830, 59774887344
Offset: 1
Comments
In fairy chess the leaper [1,4] is called a giraffe.
a(n) is also number of permutations p of 1,2,...,n satisfying |p(i+1)-p(i)|<>4 AND |p(j+4)-p(j)|<>1 AND |p(m+k)-p(m)|<>k for all i>=1, j>=1, m>=1, k>=1, i+1<=n, j+4<=n, m+k<=n
Links
- V. Kotesovec, Number of ways of placing non-attacking queens, kings, bishops and knights (in English and Czech)
- Wikipedia, Fairy chess piece
Comments