A173214
Number of ways to place 4 nonattacking amazons (superqueens) on an n X n board.
Original entry on oeis.org
0, 0, 0, 0, 2, 112, 1754, 13074, 63400, 234014, 712248, 1882132, 4457246, 9679760, 19584514, 37367934, 67849336, 118085614, 198107620, 321870956, 508359070, 782972820, 1179105738, 1740089734, 2521359260, 3593085246, 5043058972
Offset: 1
-
CoefficientList[Series[2 x^4 (28 x^17 - 18 x^16 - 162 x^15 - 139 x^14 + 261 x^13 + 1268 x^12 + 2387 x^11 + 1220 x^10 - 5937 x^9 - 18637 x^8 - 30086 x^7 - 31557 x^6 - 23251 x^5 - 11716 x^4 - 3859 x^3 - 708 x^2 - 53 x - 1) / ((x + 1)^4 (x - 1)^9 (x^2 + x + 1)^2), {x, 0, 50}], x] (* Vincenzo Librandi, May 30 2013 *)
A174642
Number of ways to place 4 nonattacking amazons (superqueens) on a 4 X n board.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 12, 60, 180, 432, 900, 1692, 2940, 4800, 7452, 11100, 15972, 22320, 30420, 40572, 53100, 68352, 86700, 108540, 134292, 164400, 199332, 239580, 285660, 338112, 397500, 464412, 539460, 623280, 716532, 819900, 934092, 1059840
Offset: 1
-
CoefficientList[Series[- 12 x^7 (x^3 + 1) / (x - 1)^5, {x, 0, 50}], x] (* Vincenzo Librandi, May 30 2013 *)
A178973
Number of ways to place 3 nonattacking amazons (superqueens) on an n X n toroidal board.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 588, 3328, 9720, 27600, 59048, 124992, 226460, 408464, 666900, 1086464, 1650768, 2505168, 3610000, 5198400, 7191828, 9945232, 13320220, 17835264, 23265000, 30341584, 38718648, 49401408, 61880780, 77504400, 95550308, 117788672, 143225280, 174144464, 209210400, 251325504, 298732228, 355068048, 418062060, 492217600
Offset: 1
-
CoefficientList[Series[- 4 x^6 (36 x^11 - 47 x^10 - 178 x^9 + 228 x^8 + 354 x^7 - 419 x^6 - 356 x^5 + 297 x^4 + 182 x^3 + 178 x^2 + 538 x + 147) / ((x - 1)^7 (x + 1)^5), {x, 0, 50}], x] (* Vincenzo Librandi, May 31 2013 *)
A178967
Number of ways to place 5 nonattacking amazons (superqueens) on an n X n board.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 248, 7320, 82758, 562384, 2756122, 10771928, 35504296, 102677536, 267284836, 638673432, 1420555842, 2974232240, 5911536526, 11232560320, 20516606128, 36191817440, 61893239340, 102950022616, 167010533830, 264869097472, 411497661102, 627378473416, 940130628920, 1386570370640, 2015178519904, 2889176379864, 4090150245318, 5722507236712, 7918655437366, 10845295301648, 14710646654420, 19773136732920, 26351274869008, 34835414789584
Offset: 1
-
Flatten[{{0, 0, 0, 0, 0, 0, 248, 7320, 82758},FullSimplify[Table[1/120*n^10-5/18*n^9+253/72*n^8-689/45*n^7-34217/360*n^6+28391/18*n^5-6828569/810*n^4+29655659/1620*n^3+14328773/1296*n^2-779503661/6480*n+9261910451/64800 +(1/8*n^5-143/48*n^4+79/3*n^3-4711/48*n^2+5171/48*n+2549/32)*(-1)^n +1/2*(29*n-35)*Cos[Pi*n/2] +(2*n+15)*Sin[Pi*n/2] +1/81*(96*n^3-1328*n^2+4744*n-2248)*Cos[4*Pi*n/3] -1/243*(120*n^2-1496*n+5224)*Sqrt[3]*Sin[4*Pi*n/3] +8/25*((5-Sqrt[5])*n+2*Sqrt[5]-8)*Cos[4*Pi*n/5] +8/25*((5+Sqrt[5])*n-2*Sqrt[5]-8)*Cos[8*Pi*n/5] +8/25*Sqrt[50-22*Sqrt[5]]*Sin[4*Pi*n/5] -8/25*Sqrt[50+22*Sqrt[5]]*Sin[8*Pi*n/5], {n, 10, 20}]]}]
Showing 1-4 of 4 results.
Comments