A174216
a(1)=15; for n>1, a(n) = the smallest number k >a(n-1) such that 2*A174214(k)= 3*(k-1).
Original entry on oeis.org
15, 27, 63, 123, 279, 567, 1143, 2307, 4623, 9447, 18927, 38283, 77139, 154839, 309747, 620463, 1241823, 2483847, 4967739, 9935607, 19892547, 39785199
Offset: 1
-
A174216 := proc(n) option remember ; if n =1 then 15 ; else for k from procname(n-1)+1 do if 2*A173214(k) = 3*(k-1) then return k; end if; end do ; end if; end proc: # R. J. Mathar, Mar 16 2010
-
(* b = A174214 *) b[n_] := b[n] = Which[n==9, 14, CoprimeQ[b[n-1], n-1- (-1)^n], b[n-1]+1, True, 2n-4]; a[n_] := a[n] = If[n==1, 15, For[k = a[n- 1]+1, True, k++, If[2b[k] == 3(k-1), Return[k]]]]; Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 1, 22}] (* Jean-François Alcover, Feb 02 2016 *)
I corrected the terms beginning with a(11) and added some new terms. -
Vladimir Shevelev, Mar 27 2010
Terms from a(11) onwards were corrected according to independent calculations by R. Mathar, M. Alekseyev, M. Hasler and A. Heinz (SeqFan lists 30 Oct and 1 Nov 2010). -
Vladimir Shevelev, Nov 02 2010
A174642
Number of ways to place 4 nonattacking amazons (superqueens) on a 4 X n board.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 12, 60, 180, 432, 900, 1692, 2940, 4800, 7452, 11100, 15972, 22320, 30420, 40572, 53100, 68352, 86700, 108540, 134292, 164400, 199332, 239580, 285660, 338112, 397500, 464412, 539460, 623280, 716532, 819900, 934092, 1059840
Offset: 1
-
CoefficientList[Series[- 12 x^7 (x^3 + 1) / (x - 1)^5, {x, 0, 50}], x] (* Vincenzo Librandi, May 30 2013 *)
A178967
Number of ways to place 5 nonattacking amazons (superqueens) on an n X n board.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 248, 7320, 82758, 562384, 2756122, 10771928, 35504296, 102677536, 267284836, 638673432, 1420555842, 2974232240, 5911536526, 11232560320, 20516606128, 36191817440, 61893239340, 102950022616, 167010533830, 264869097472, 411497661102, 627378473416, 940130628920, 1386570370640, 2015178519904, 2889176379864, 4090150245318, 5722507236712, 7918655437366, 10845295301648, 14710646654420, 19773136732920, 26351274869008, 34835414789584
Offset: 1
-
Flatten[{{0, 0, 0, 0, 0, 0, 248, 7320, 82758},FullSimplify[Table[1/120*n^10-5/18*n^9+253/72*n^8-689/45*n^7-34217/360*n^6+28391/18*n^5-6828569/810*n^4+29655659/1620*n^3+14328773/1296*n^2-779503661/6480*n+9261910451/64800 +(1/8*n^5-143/48*n^4+79/3*n^3-4711/48*n^2+5171/48*n+2549/32)*(-1)^n +1/2*(29*n-35)*Cos[Pi*n/2] +(2*n+15)*Sin[Pi*n/2] +1/81*(96*n^3-1328*n^2+4744*n-2248)*Cos[4*Pi*n/3] -1/243*(120*n^2-1496*n+5224)*Sqrt[3]*Sin[4*Pi*n/3] +8/25*((5-Sqrt[5])*n+2*Sqrt[5]-8)*Cos[4*Pi*n/5] +8/25*((5+Sqrt[5])*n-2*Sqrt[5]-8)*Cos[8*Pi*n/5] +8/25*Sqrt[50-22*Sqrt[5]]*Sin[4*Pi*n/5] -8/25*Sqrt[50+22*Sqrt[5]]*Sin[8*Pi*n/5], {n, 10, 20}]]}]
A178974
Number of ways to place 4 nonattacking amazons (superqueens) on an n X n toroidal board.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 98, 3328, 17496, 99600, 316052, 1041408, 2501538, 6157536, 12531150, 25938944, 47168268, 86938272, 145818008, 247240000, 390084786, 620964256, 933865918, 1414946304, 2047225000, 2980849040, 4177648224, 5886858432, 8032809818, 11012886000, 14689386642, 19674427392, 25732782504, 33779841296, 43433208000, 56027023488, 70963952198, 90145026976, 112667956362, 141187744000
Offset: 1
-
CoefficientList[Series[2 x^6 (162 x^30 - 350 x^29 - 1488 x^28 - 718 x^27 + 2389 x^26 + 6635 x^25 + 6157 x^24 - 3372 x^23 - 15873 x^22 - 22215 x^21 - 8561 x^20 + 23622 x^19 + 55919 x^18 + 38469 x^17 - 91949 x^16 - 461696 x^15 - 1076702 x^14 - 1978832 x^13 - 2858196 x^12 - 3576618 x^11 - 3727323 x^10 - 3419559 x^9 - 2634463 x^8 - 1782420 x^7 - 988307 x^6 - 472291 x^5 - 171451 x^4 - 53262 x^3 - 10265 x^2 - 1713 x - 49) / ((x - 1)^9 (x + 1)^7 (x^2 + 1)^3 (x^2 + x + 1)^3), {x, 0, 40}], x] (* _Vincenzo Librandi Jun 01 2013 *)
Showing 1-4 of 4 results.
Comments