cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A174216 a(1)=15; for n>1, a(n) = the smallest number k >a(n-1) such that 2*A174214(k)= 3*(k-1).

Original entry on oeis.org

15, 27, 63, 123, 279, 567, 1143, 2307, 4623, 9447, 18927, 38283, 77139, 154839, 309747, 620463, 1241823, 2483847, 4967739, 9935607, 19892547, 39785199
Offset: 1

Views

Author

Vladimir Shevelev, Mar 12 2010

Keywords

Comments

Theorem: If the sequence is infinite, then there exist infinitely many twin primes.
Conjecture. a(n+1)/a(n) tends to 2.

Crossrefs

Programs

  • Maple
    A174216 := proc(n) option remember ; if n =1 then 15 ; else for k from procname(n-1)+1 do if 2*A173214(k) = 3*(k-1) then return k; end if; end do ; end if; end proc: # R. J. Mathar, Mar 16 2010
  • Mathematica
    (* b = A174214 *) b[n_] := b[n] = Which[n==9, 14, CoprimeQ[b[n-1], n-1- (-1)^n], b[n-1]+1, True, 2n-4]; a[n_] := a[n] = If[n==1, 15, For[k = a[n- 1]+1, True, k++, If[2b[k] == 3(k-1), Return[k]]]]; Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 1, 22}] (* Jean-François Alcover, Feb 02 2016 *)

Extensions

Terms from a(11) on corrected by R. J. Mathar, Mar 16 2010
I corrected the terms beginning with a(11) and added some new terms. - Vladimir Shevelev, Mar 27 2010
Terms from a(11) onwards were corrected according to independent calculations by R. Mathar, M. Alekseyev, M. Hasler and A. Heinz (SeqFan lists 30 Oct and 1 Nov 2010). - Vladimir Shevelev, Nov 02 2010

A174642 Number of ways to place 4 nonattacking amazons (superqueens) on a 4 X n board.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 12, 60, 180, 432, 900, 1692, 2940, 4800, 7452, 11100, 15972, 22320, 30420, 40572, 53100, 68352, 86700, 108540, 134292, 164400, 199332, 239580, 285660, 338112, 397500, 464412, 539460, 623280, 716532, 819900, 934092, 1059840
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 25 2010

Keywords

Comments

An amazon (superqueen) moves like a queen and a knight

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[- 12 x^7 (x^3 + 1) / (x - 1)^5, {x, 0, 50}], x] (* Vincenzo Librandi, May 30 2013 *)

Formula

G.f.: -12*x^8*(x^3+1)/(x-1)^5.
Explicit formula: a(n) = (n-7)(n^3-21n^2+158n-420), n>=7.

Extensions

More terms from Vincenzo Librandi, May 30 2013

A178967 Number of ways to place 5 nonattacking amazons (superqueens) on an n X n board.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 248, 7320, 82758, 562384, 2756122, 10771928, 35504296, 102677536, 267284836, 638673432, 1420555842, 2974232240, 5911536526, 11232560320, 20516606128, 36191817440, 61893239340, 102950022616, 167010533830, 264869097472, 411497661102, 627378473416, 940130628920, 1386570370640, 2015178519904, 2889176379864, 4090150245318, 5722507236712, 7918655437366, 10845295301648, 14710646654420, 19773136732920, 26351274869008, 34835414789584
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 01 2011

Keywords

Comments

An amazon (superqueen) moves like a queen and a knight.

Crossrefs

Programs

  • Mathematica
    Flatten[{{0, 0, 0, 0, 0, 0, 248, 7320, 82758},FullSimplify[Table[1/120*n^10-5/18*n^9+253/72*n^8-689/45*n^7-34217/360*n^6+28391/18*n^5-6828569/810*n^4+29655659/1620*n^3+14328773/1296*n^2-779503661/6480*n+9261910451/64800 +(1/8*n^5-143/48*n^4+79/3*n^3-4711/48*n^2+5171/48*n+2549/32)*(-1)^n +1/2*(29*n-35)*Cos[Pi*n/2] +(2*n+15)*Sin[Pi*n/2] +1/81*(96*n^3-1328*n^2+4744*n-2248)*Cos[4*Pi*n/3] -1/243*(120*n^2-1496*n+5224)*Sqrt[3]*Sin[4*Pi*n/3] +8/25*((5-Sqrt[5])*n+2*Sqrt[5]-8)*Cos[4*Pi*n/5] +8/25*((5+Sqrt[5])*n-2*Sqrt[5]-8)*Cos[8*Pi*n/5] +8/25*Sqrt[50-22*Sqrt[5]]*Sin[4*Pi*n/5] -8/25*Sqrt[50+22*Sqrt[5]]*Sin[8*Pi*n/5], {n, 10, 20}]]}]

Formula

a(n) = 1/120*n^10-5/18*n^9+253/72*n^8-689/45*n^7-34217/360*n^6+28391/18*n^5-6828569/810*n^4+29655659/1620*n^3+14328773/1296*n^2-779503661/6480*n+9261910451/64800 +(1/8*n^5-143/48*n^4+79/3*n^3-4711/48*n^2+5171/48*n+2549/32)*(-1)^n +1/2*(29*n-35)*cos(Pi*n/2) +(2*n+15)*sin(Pi*n/2) +1/81*(96*n^3-1328*n^2+4744*n-2248)*cos(4*Pi*n/3) -1/243*(120*n^2-1496*n+5224)*sqrt(3)*sin(4*Pi*n/3) +8/25*((5-sqrt(5))*n+2*sqrt(5)-8)*cos(4*Pi*n/5) +8/25*((5+sqrt(5))*n-2*sqrt(5)-8)*cos(8*Pi*n/5) +8/25*sqrt(50-22*sqrt(5))*sin(4*Pi*n/5) -8/25*sqrt(50+22*sqrt(5))*sin(8*Pi*n/5), n>=10.
a(n) = n^10/120 - 5*n^9/18 + 253*n^8/72 - 689*n^7/45 - 34307*n^6/360 + 57001*n^5/36 - 55000657*n^4/6480 + 60118543*n^3/3240 + 34387307*n^2/3240 - 155720509*n/1296 + 142960 + (n^5/2 - 143*n^4/12 + 316*n^3/3 - 4711*n^2/12 + 5123*n/12 + 2309/8)*floor[n/2] + (32*n^3/9 - 1328*n^2/27 + 4744*n/27 - 2248/27)*floor[n/3] + (16*n^3/9 - 724*n^2/27 + 1040*n/9 - 3736/27)*floor[(n+1)/3] + (33*n - 5)*floor[n/4] + (25*n - 65)*floor[(n+1)/4] + (32*n/5 - 48/5)*floor[n/5] + (24*n/5 - 64/5)*floor[(n+1)/5] + (16*n/5 - 56/5)*floor[(n+2)/5] + (8*n/5 - 32/5)*floor[(n+3)/5], n>=10.
G.f.: (2*x^7*(-124 - 3784*x - 44667*x^2 - 310723*x^3 - 1509124*x^4 - 5621180*x^5 - 16954312*x^6 - 42976662*x^7 - 93896850*x^8 - 180088868*x^9 - 307206501*x^10 - 470650261*x^11 - 652017897*x^12 - 820670989*x^13 - 941074901*x^14 - 984212615*x^15 - 938015444*x^16 - 812413066*x^17 - 635893628*x^18 - 445615046*x^19 - 275100707*x^20 - 145295581*x^21 - 61597137*x^22 - 17181649*x^23 + 704005*x^24 + 4589289*x^25 + 3324134*x^26 + 1424132*x^27 + 316332*x^28 - 58210*x^29 - 91844*x^30 - 47684*x^31 - 15863*x^32 - 3119*x^33 + 490*x^34 + 982*x^35 + 632*x^36 + 260*x^37 + 126*x^38 + 54*x^39))/((-1+x)^11*(1+x)^6*(1+x^2)^2*(1+x+x^2)^4*(1+x+x^2+x^3+x^4)^2).
Recurrence: a(n) = a(n-37) + a(n-36) - 3a(n-35) - 7a(n-34) - 3a(n-33) + 11a(n-32) + 21a(n-31) + 13a(n-30) - 13a(n-29) - 41a(n-28) - 44a(n-27) - 8a(n-26) + 49a(n-25) + 81a(n-24) + 57a(n-23) - 15a(n-22) - 88a(n-21) - 106a(n-20) - 48a(n-19) + 48a(n-18) + 106a(n-17) + 88a(n-16) + 15a(n-15) - 57a(n-14) - 81a(n-13) - 49a(n-12) + 8a(n-11) + 44a(n-10) + 41a(n-9) + 13a(n-8) - 13a(n-7) - 21a(n-6) - 11a(n-5) + 3a(n-4) + 7a(n-3) + 3a(n-2) - a(n-1), n>=47.

A178974 Number of ways to place 4 nonattacking amazons (superqueens) on an n X n toroidal board.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 98, 3328, 17496, 99600, 316052, 1041408, 2501538, 6157536, 12531150, 25938944, 47168268, 86938272, 145818008, 247240000, 390084786, 620964256, 933865918, 1414946304, 2047225000, 2980849040, 4177648224, 5886858432, 8032809818, 11012886000, 14689386642, 19674427392, 25732782504, 33779841296, 43433208000, 56027023488, 70963952198, 90145026976, 112667956362, 141187744000
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 02 2011

Keywords

Comments

An amazon (superqueen) moves like a queen and a knight.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[2 x^6 (162 x^30 - 350 x^29 - 1488 x^28 - 718 x^27 + 2389 x^26 + 6635 x^25 + 6157 x^24 - 3372 x^23 - 15873 x^22 - 22215 x^21 - 8561 x^20 + 23622 x^19 + 55919 x^18 + 38469 x^17 - 91949 x^16 - 461696 x^15 - 1076702 x^14 - 1978832 x^13 - 2858196 x^12 - 3576618 x^11 - 3727323 x^10 - 3419559 x^9 - 2634463 x^8 - 1782420 x^7 - 988307 x^6 - 472291 x^5 - 171451 x^4 - 53262 x^3 - 10265 x^2 - 1713 x - 49) / ((x - 1)^9 (x + 1)^7 (x^2 + 1)^3 (x^2 + x + 1)^3), {x, 0, 40}], x] (* _Vincenzo Librandi Jun 01 2013 *)

Formula

a(n)= (1/4)*n^2*(n^6/6 -4*n^5 +197*n^4/6 -66*n^3 -1941*n^2/4 +2638*n -18907/6 +(n^4/2 -10*n^3 +289*n^2/4 -210*n +357/2)*(-1)^n +18*cos(Pi*n/2) +32/3*cos(4*Pi*n/3)), n>=10.
G.f.: 2*x^7*(162*x^30 -350*x^29 -1488*x^28 -718*x^27 +2389*x^26 +6635*x^25 +6157*x^24 -3372*x^23 -15873*x^22 -22215*x^21 -8561*x^20 +23622*x^19 +55919*x^18 +38469*x^17 -91949*x^16 -461696*x^15 -1076702*x^14 -1978832*x^13 -2858196*x^12 -3576618*x^11 -3727323*x^10 -3419559*x^9 -2634463*x^8 -1782420*x^7 -988307*x^6 -472291*x^5 -171451*x^4 -53262*x^3 -10265*x^2 -1713*x -49)/((x-1)^9*(x+1)^7*(x^2+1)^3*(x^2+x+1)^3).
Showing 1-4 of 4 results.