A225553
Longest checkmate in king and amazon versus king endgame on an n X n chessboard.
Original entry on oeis.org
0, 1, 2, 3, 4, 4, 5, 5, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21
Offset: 3
Longest win on an 8x8 chessboard: Ka1 AMb1 - Kd4, 1.AMb1-f5! Kd4-c4! 2.Ka1-b1 Kc4-b4! 3.Kb1-b2 Kb4-a4 4.AMf5-c5#, therefore a(8) = 4.
- V. Kotesovec, King and Two Generalised Knights against King, ICGA Journal, Vol. 24, No. 2, pp. 105-107 (2001)
- V. Kotesovec, Fairy chess endings on an n x n chessboard, Electronic edition of chess booklets by Vaclav Kotesovec, vol. 8, p.364 (2013), p. 544 (second edition, 2017).
A172201
Number of ways to place 3 nonattacking amazons (superqueens) on an n X n board.
Original entry on oeis.org
0, 0, 0, 0, 48, 424, 1976, 6616, 17852, 41544, 86660, 166288, 298616, 508200, 827168, 1296744, 1968676, 2907016, 4189772, 5910944, 8182400, 11136168, 14926536, 19732600, 25760588, 33246664, 42459476, 53703216, 67320392, 83695144
Offset: 1
- Panos Louridas, idee & form 93/2007, pp. 2936-2938.
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Vaclav Kotesovec, Number of ways of placing non-attacking queens and kings on boards of various sizes
- Index entries for linear recurrences with constant coefficients, signature (5,-8,0,14,-14,0,8,-5,1).
-
R:=PowerSeriesRing(Integers(), 40); [0,0,0,0] cat Coefficients(R!( 4*x^5*(12+46*x+60*x^2+32*x^3-23*x^4-13*x^5+7*x^6-x^7)/((1+x)^2*(1-x)^7 ))); // G. C. Greubel, Apr 29 2022
-
CoefficientList[Series[4*x^5*(12+46*x+60*x^2+32*x^3-23*x^4-13*x^5+7*x^6-x^7)/((1+x)^2*(1-x)^7), {x, 0, 40}], x] (* Vincenzo Librandi, May 27 2013 *)
-
[(1/24)*(4*n^6 -40*n^5 +62*n^4 +628*n^3 -2904*n^2 +4074*n -1341 +3*(-1)^n*(2*n-1)) -4*(5*bool(n==1) +2*bool(n==2) -bool(n==3)) for n in (1..40)] # G. C. Greubel, Apr 29 2022
A173214
Number of ways to place 4 nonattacking amazons (superqueens) on an n X n board.
Original entry on oeis.org
0, 0, 0, 0, 2, 112, 1754, 13074, 63400, 234014, 712248, 1882132, 4457246, 9679760, 19584514, 37367934, 67849336, 118085614, 198107620, 321870956, 508359070, 782972820, 1179105738, 1740089734, 2521359260, 3593085246, 5043058972
Offset: 1
-
CoefficientList[Series[2 x^4 (28 x^17 - 18 x^16 - 162 x^15 - 139 x^14 + 261 x^13 + 1268 x^12 + 2387 x^11 + 1220 x^10 - 5937 x^9 - 18637 x^8 - 30086 x^7 - 31557 x^6 - 23251 x^5 - 11716 x^4 - 3859 x^3 - 708 x^2 - 53 x - 1) / ((x + 1)^4 (x - 1)^9 (x^2 + x + 1)^2), {x, 0, 50}], x] (* Vincenzo Librandi, May 30 2013 *)
A174642
Number of ways to place 4 nonattacking amazons (superqueens) on a 4 X n board.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 12, 60, 180, 432, 900, 1692, 2940, 4800, 7452, 11100, 15972, 22320, 30420, 40572, 53100, 68352, 86700, 108540, 134292, 164400, 199332, 239580, 285660, 338112, 397500, 464412, 539460, 623280, 716532, 819900, 934092, 1059840
Offset: 1
-
CoefficientList[Series[- 12 x^7 (x^3 + 1) / (x - 1)^5, {x, 0, 50}], x] (* Vincenzo Librandi, May 30 2013 *)
A178972
Number of ways to place 2 nonattacking amazons (superqueens) on an n X n toroidal board.
Original entry on oeis.org
0, 0, 0, 0, 0, 144, 392, 896, 1620, 2800, 4356, 6624, 9464, 13328, 18000, 24064, 31212, 40176, 50540, 63200, 77616, 94864, 114264, 137088, 162500, 191984, 224532, 261856, 302760, 349200, 399776, 456704, 518364, 587248, 661500, 743904, 832352, 929936, 1034280, 1148800
Offset: 1
-
CoefficientList[Series[4 x^5 (8 x^6 - 7 x^5 - 30 x^4 + 23 x^3 + 44 x^2 - 26 x - 36) / ((x - 1)^5 (x + 1)^3), {x, 0, 50}], x] (* Vincenzo Librandi, May 31 2013 *)
A178967
Number of ways to place 5 nonattacking amazons (superqueens) on an n X n board.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 248, 7320, 82758, 562384, 2756122, 10771928, 35504296, 102677536, 267284836, 638673432, 1420555842, 2974232240, 5911536526, 11232560320, 20516606128, 36191817440, 61893239340, 102950022616, 167010533830, 264869097472, 411497661102, 627378473416, 940130628920, 1386570370640, 2015178519904, 2889176379864, 4090150245318, 5722507236712, 7918655437366, 10845295301648, 14710646654420, 19773136732920, 26351274869008, 34835414789584
Offset: 1
-
Flatten[{{0, 0, 0, 0, 0, 0, 248, 7320, 82758},FullSimplify[Table[1/120*n^10-5/18*n^9+253/72*n^8-689/45*n^7-34217/360*n^6+28391/18*n^5-6828569/810*n^4+29655659/1620*n^3+14328773/1296*n^2-779503661/6480*n+9261910451/64800 +(1/8*n^5-143/48*n^4+79/3*n^3-4711/48*n^2+5171/48*n+2549/32)*(-1)^n +1/2*(29*n-35)*Cos[Pi*n/2] +(2*n+15)*Sin[Pi*n/2] +1/81*(96*n^3-1328*n^2+4744*n-2248)*Cos[4*Pi*n/3] -1/243*(120*n^2-1496*n+5224)*Sqrt[3]*Sin[4*Pi*n/3] +8/25*((5-Sqrt[5])*n+2*Sqrt[5]-8)*Cos[4*Pi*n/5] +8/25*((5+Sqrt[5])*n-2*Sqrt[5]-8)*Cos[8*Pi*n/5] +8/25*Sqrt[50-22*Sqrt[5]]*Sin[4*Pi*n/5] -8/25*Sqrt[50+22*Sqrt[5]]*Sin[8*Pi*n/5], {n, 10, 20}]]}]
Showing 1-6 of 6 results.
Comments