cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352667 Maximum number of induced copies of the paw graph in an n-node graph.

Original entry on oeis.org

0, 0, 0, 1, 4, 9, 18, 36, 60, 97, 152, 224
Offset: 1

Views

Author

Pontus von Brömssen, Mar 26 2022

Keywords

Comments

The sequence (a(n)/binomial(n,4)) is decreasing for n >= 4 and converges to 3/8, the inducibility of the paw graph (Hirst 2014).
Assuming that the extremal graph is KK(j_1, j_2; k_1, k_2), as defined in the Example section below, for some j_1, j_2, k_1, k_2 (these graphs are asymptotically extremal), the sequence would continue as follows, with a(n) = (binomial(j_1,2)*j_2 + binomial(j_2,2)*j_1)*(k_1 + k_2) + (binomial(k_1,2)*k_2 + binomial(k_2,2)*k_1)*(j_1 + j_2).
n | a(n) | (j_1, j_2), (k_1, k_2)
|(conjectural)|
-------------------------------------------------------
13 316 (2,2), (4,5)
14 440 (2,2), (5,5)
15 590 (2,3), (5,5)
16 780 (3,3), (5,5)
17 1008 (2,3), (6,6), or (3,3), (5,6)
18 1296 (3,3), (6,6)
19 1620 (3,3), (6,7), or (3,4), (6,6)
20 2016 (3,3), (7,7), or (4,4), (6,6)
21 2478 (3,4), (7,7)
22 3024 (4,4), (7,7)
23 3632 (4,4), (7,8)
24 4352 (4,4), (8,8)
25 5152 (4,5), (8,8)
26 6080 (5,5), (8,8)
27 7100 (5,5), (8,9)
28 8280 (5,5), (9,9)
29 9558 (5,6), (9,9)
30 11016 (6,6), (9,9)
31 12600 (5,6), (10,10), or (6,6), (9,10)
32 14400 (6,6), (10,10)
33 16320 (6,6), (10,11), or (6,7), (10,10)
34 18480 (6,6), (11,11), or (7,7), (10,10)
35 20812 (6,7), (11,11)
36 23408 (7,7), (11,11)
37 26166 (7,7), (11,12)
38 29232 (7,7), (12,12)
39 32496 (7,8), (12,12)
40 36096 (8,8), (12,12)
41 39904 (8,8), (12,13)
42 44096 (8,8), (13,13)
43 48516 (8,9), (13,13)
44 53352 (9,9), (13,13)
45 58446 (9,9), (13,14)
46 64008 (9,9), (14,14)
47 69832 (9,10), (14,14)
48 76160 (10,10), (14,14)
49 82800 (9,10), (15,15), or (10,10), (14,15)
50 90000 (10,10), (15,15)
For n > 10, more than one optimal graph of the form KK(j_1, j_2; k_1, k_2) seem to exist exactly when n = 2*m^2 + i, where m >= 3 and i = -1, 1, or 2.

Examples

			All extremal graphs (i.e., n-node graphs having a(n) induced paw graphs) for 4 <= n <= 12 are listed below. Here, KK(j_1, j_2; k_1, k_2) denotes the complement of the disjoint union of K_{j_1, j_2} and K_{k_1, k_2}.
  n = 4: KK(0,1;1,2) (the paw graph);
  n = 5: KK(0,1;2,2) (the butterfly graph);
  n = 6: KK(0,1;2,3);
  n = 7: KK(0,1;3,3), KK(0,2;2,3), and KK(1,1;2,3);
  n = 8: KK(0,2;3,3) and KK(1,1; 3,3);
  n = 9: KK(0,2;3,4), KK(1,1;3,4), and KK(1,2;3,3);
  n = 10: KK(1,2;3,4);
  n = 11: KK(1,2;4,4);
  n = 12: KK(2,2;4,4).
		

Crossrefs

Maximum number of induced copies of other graphs: A028723 (4-node cycle), A111384 (3-node path), A352665 (4-node path), A352666 (claw graph), A352668 (diamond graph), A352669 (cycles).

Extensions

a(10)-a(12) added using tinygraph by Falk Hüffner, Apr 05 2022