A352828 Number of strict integer partitions y of n with no fixed points y(i) = i.
1, 0, 1, 2, 2, 2, 2, 3, 4, 6, 8, 10, 12, 14, 16, 19, 22, 26, 32, 38, 46, 56, 66, 78, 92, 106, 123, 142, 162, 186, 214, 244, 280, 322, 368, 422, 484, 552, 630, 718, 815, 924, 1046, 1180, 1330, 1498, 1682, 1888, 2118, 2372, 2656, 2972, 3322, 3712, 4146, 4626
Offset: 0
Keywords
Examples
The a(0) = 1 through a(12) = 12 partitions (A-C = 10..12; empty column indicated by dot; 0 is the empty partition): 0 . 2 3 4 5 6 7 8 9 A B C 21 31 41 51 43 53 54 64 65 75 61 71 63 73 74 84 431 81 91 83 93 432 532 A1 B1 531 541 542 642 631 632 651 4321 641 732 731 741 5321 831 5421 6321
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..5000
Crossrefs
A352833 counts partitions by fixed points.
Programs
-
Mathematica
pq[y_]:=Length[Select[Range[Length[y]],#==y[[#]]&]]; Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&pq[#]==0&]],{n,0,30}]
Formula
G.f.: Sum_{n>=0} q^(n*(3*n+1)/2)*Product_{k=1..n} (1+q^k)/(1-q^k). - Jeremy Lovejoy, Sep 26 2022