cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352892 Next even term in the trajectory of map x -> A341515(x), when starting from x=n; a(1) = 1. Here A341515 is the Collatz or 3x+1 map (A006370) conjugated by unary-binary-encoding (A156552).

Original entry on oeis.org

1, 2, 2, 6, 2, 2, 2, 12, 4, 8, 2, 14, 2, 18, 6, 24, 2, 6, 2, 54, 10, 50, 2, 28, 4, 98, 8, 150, 2, 2, 2, 48, 14, 242, 6, 70, 2, 338, 22, 108, 2, 8, 2, 294, 12, 578, 2, 56, 4, 20, 26, 726, 2, 12, 10, 300, 34, 722, 2, 26, 2, 1058, 20, 96, 14, 18, 2, 1014, 38, 32, 2, 140, 2, 1682, 18, 1734, 6, 50, 2, 216, 16, 1922, 2, 686
Offset: 1

Views

Author

Antti Karttunen, Apr 08 2022

Keywords

Crossrefs

Coincides with A353268 on even n, and with A348717 on odd n.

Programs

  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A156552(n) = { my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res };
    A329603(n) = A005940(2+(3*A156552(n)));
    A341515(n) = if(n%2, A064989(n), A329603(n));
    A348717(n) = { my(f=factor(n)); if(#f~>0, my(pi1=primepi(f[1, 1])); for(k=1, #f~, f[k, 1] = prime(primepi(f[k, 1])-pi1+1))); factorback(f); }; \\ From A348717
    A352892(n) = A348717(A341515(n));
    
  • PARI
    A352892(n) = if(1==n, n, n = A341515(n); while(n%2, n = A341515(n)); (n)); \\ A slower alternative.

Formula

a(n) = A348717(A341515(n)).
For all n >= 1, a(2n) = A353268(2n), a(2n-1) = A348717(2n-1).
a(p) = 2 for all primes p.
For n > 1, a(n) = A005940(1+A139391(A156552(n))).