A352900 a(n) is the number of different ways to partition the set of vertices of a convex n-gon into intersecting polygons.
0, 0, 0, 7, 28, 79, 460, 2486, 11209, 59787, 361777, 2167635, 13577211, 91919186, 650059294, 4761980740, 36508824672, 292116858616, 2424047807182, 20847409357919, 185754041370693, 1711253802075941, 16272637412753211, 159561718074359537, 1611599794862761838, 16747401536440092104
Offset: 3
Keywords
Examples
For n=6, there are a(6) = 7 intersecting partitions of the convex hexagon. On vertices 1..6, they are the following pairs of triangles: {1,3,4}, {5,6,2} {4,5,1}, {2,3,6} {3,4,6}, {1,2,5} {2,3,5}, {1,4,6} {1,2,4}, {5,6,3} {1,6,3}, {5,4,2} {1,3,5}, {2,4,6}
Programs
-
PARI
T2(n,k) = if (n<3, 0, if (k==1, 1, k*T2(n-1,k) + binomial(n-1,2)*T2(n-3,k-1))); \\ A059022 a5(n) = if (n<3, n==0, sum(k=1, n\3, T2(n,k))); \\ A006505 a7(n) = sum(k=ceil((n+3)/2), n, (1/(n+1) * binomial(n+1, k) * binomial(2*k-n-3, n-k)) ); \\ A114997 a(n) = a5(n) - a7(n); \\ Michel Marcus, Apr 09 2022
Formula
a(n) = Sum_{k=2..floor(n/3)} (T(n,k) - C(n+1,k)*C(n-2k-1,k-1)/(n+1)); n > 5, where T(n,k) = k*T(n-1,k) + C(n-1,2)*T(n-3,k-1); n > 5 and 1 < k <= floor(n/3), T(n,k) = 1 when k = 1.
T(n,k) = A059022(n,k) is the number of different ways to partition the set of vertices of a convex n-gon into k polygons.
Extensions
More terms from Michel Marcus, Apr 09 2022