cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352944 a(n) = Sum_{k=0..floor(n/2)} (n-2*k)^k.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 9, 16, 31, 61, 125, 266, 579, 1305, 3009, 7120, 17255, 42697, 108005, 278466, 731883, 1958589, 5331625, 14758720, 41501135, 118507301, 343405709, 1009313322, 3007557523, 9081204849, 27775308049, 86014412384, 269603741111, 855012176081
Offset: 0

Views

Author

Seiichi Manyama, Apr 09 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1},Table[Sum[(n-2k)^k,{k,0,Floor[n/2]}],{n,40}]] (* Harvey P. Dale, Dec 12 2022 *)
  • PARI
    a(n) = sum(k=0, n\2, (n-2*k)^k);
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1-k*x^2)))

Formula

G.f.: Sum_{k>=0} x^k / (1 - k * x^2).
a(n) ~ sqrt(Pi) * (n/LambertW(exp(1)*n))^((n + 1 - n/LambertW(exp(1)*n))/2) / sqrt(1 + LambertW(exp(1)*n)). - Vaclav Kotesovec, Apr 14 2022