cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352977 Expansion of e.g.f. cos(2x) cos(3x) / cos(6x) (even powers only).

Original entry on oeis.org

1, 23, 3985, 1743623, 1424614945, 1870693029623, 3602792061891505, 9566946196183630823, 33500193836861731481665, 149565522713623779723211223, 829235405016410370201483113425, 5589623533324449496004527793434823, 45017811997394066193946619670380594785
Offset: 0

Views

Author

F. Chapoton, Apr 13 2022

Keywords

Comments

Only terms of even index are given. Terms of odd index are zero.

Crossrefs

Intermediate case between A002437 and A349429.
Cf. A000192.

Programs

  • Maple
    egf := (cos(x) + cos(5*x))*sec(6*x) / 2: ser := series(egf, x, 32):
    seq(n!*coeff(ser, x ,n), n = 0..24, 2); # Peter Luschny, Apr 13 2022
  • PARI
    my(x='x+O('x^30)); select(x->(x>0), Vec(serlaplace(cos(2*x)*cos(3*x)/cos(6*x)))) \\ Michel Marcus, Apr 13 2022
  • Sage
    x = PowerSeriesRing(QQ, 'x', default_prec=30).gen()
    f = cos(2*x) * cos(3*x) / cos(6*x)
    [cf for cf in f.egf_to_ogf() if cf]
    

Formula

E.g.f.: cos(2*x) * cos(3*x) / cos(6*x).
From Peter Luschny, Apr 13 2022: (Start)
E.g.f.: (cos(x) + cos(5*x))*sec(6*x) / 2, even powers only.
a(n) = A000192(n)/2. (End)
a(n) ~ 2^(6*n + 3/2) * 3^(2*n + 1/2) * n^(2*n + 1/2) / (Pi^(2*n + 1/2) * exp(2*n)). - Vaclav Kotesovec, Apr 15 2022