cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352982 a(n) = Sum_{k=0..floor(n/3)} k^n.

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 65, 129, 257, 20196, 60074, 179196, 17312754, 68711380, 273234810, 31605701625, 156925970179, 780248593545, 105443761093411, 628709267031321, 3752628871164355, 580964060390826448, 4043844561787569140, 28170468954985342384
Offset: 0

Views

Author

Seiichi Manyama, Apr 13 2022

Keywords

Crossrefs

Programs

  • Magma
    [(&+[k^n: k in [0..Floor(n/3)]]): n in [0..40]]; // G. C. Greubel, Nov 01 2022
    
  • Mathematica
    a[0] = 1; a[n_] := Sum[k^n, {k, 0, Floor[n/3]}]; Array[a, 24, 0] (* Amiram Eldar, Apr 13 2022 *)
  • PARI
    a(n) = sum(k=0, n\3, k^n);
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, (k*x)^(3*k)/(1-k*x)))
    
  • SageMath
    [sum( k^n for k in range((n//3)+1)) for n in range(41)] # G. C. Greubel, Nov 01 2022

Formula

G.f.: Sum_{k>=0} (k * x)^(3 * k) / (1 - k * x).