A352992 Smallest positive integer whose cube ends with exactly n 7's.
1, 3, 53, 1753, 753, 60753, 660753, 9660753, 99660753, 899660753, 3899660753, 33899660753, 233899660753, 7233899660753, 97233899660753, 497233899660753, 1497233899660753, 31497233899660753, 631497233899660753, 9631497233899660753, 59631497233899660753, 559631497233899660753
Offset: 0
Examples
a(1) = 3 because 3^3 = 27; a(2) = 53 because 53^2 = 148877; a(3) = 1753 because 1753^3 = 5386984777; a(4) = 753 because 753^2 = 426957777; a(5) = 60753 because 60753^3 = 224234888577777. Table with a(n) and A225401(n-1) --------------------------------------------------------------------------- | | a(n) | a'(n) | A225401(n-1) | concatenation | | n | with "exactly" | without "exactly" | = b(n-1) | b(n-1)...b(0) | --------------------------------------------------------------------------- 0 1 1 1 3 3 3 ...3 2 53 53 5 ...53 3 1753 753 7 ...753 4 753 753 0 ...0753 5 60753 60753 6 ...60753 6 660753 660753 6 ...660753 7 9660753 9660753 9 ...9660753 .......................................................................... Also, as A225401(23) = 0, we have from a(21) up to a(25): a(21) = 559631497233899660753; a(22) = 3559631497233899660753; a(23) = 193559631497233899660753, found by _Marius A. Burtea_; a(24) = 93559631497233899660753; a(25) = 2093559631497233899660753.
Links
- Robert Israel, Table of n, a(n) for n = 0..996
Programs
-
Maple
f:= proc(n) local t,x; t:= 7/9*(10^n-1); x:= rhs(op(msolve(x^3=t,10^n))); while x^3 mod 10^(n+1) = 10*t+7 do x:= x + 10^n od; x end proc: f(0):= 1: map(f, [$0..30]); # Robert Israel, Jul 29 2025
-
Python
def a(n): k, s, target = 1, "1", "7"*n while s.rstrip("7") + target != s: k += 1; s = str(k**3) return k print([a(n) for n in range(8)]) # Michael S. Branicky, Apr 14 2022
Extensions
a(8)-a(9) from Marius A. Burtea, Apr 14 2022
Comments