cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A352082 a(n) = Sum_{k=0..floor(n/2)} (n-2*k)^n.

Original entry on oeis.org

1, 1, 4, 28, 272, 3369, 50816, 903856, 18522624, 429746905, 11135257600, 318719062236, 9987013488640, 340037795872369, 12500401969233920, 493467700789897408, 20819865970795610112, 934939160745193002321, 44523294861684890664960
Offset: 0

Views

Author

Seiichi Manyama, Apr 16 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := Sum[(n-2*k)^n, {k, 0, Floor[n/2]}]; Array[a, 20, 0] (* Amiram Eldar, Apr 16 2022 *)
  • PARI
    a(n) = sum(k=0, n\2, (n-2*k)^n);
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k*x)^k/(1-(k*x)^2)))

Formula

G.f.: Sum_{k>=0} (k * x)^k / (1 - (k * x)^2).
Conjecture: a(n) = (1 - 2^n)*zeta(-n) - (2^n)*zeta(-n, n/2 + 1) for n > 0, where the bivariate zeta function is the Hurwitz zeta function. - Velin Yanev, Mar 25 2024
a(n) ~ n^n / (1 - exp(-2)). - Vaclav Kotesovec, Mar 25 2024

A357146 a(n) = n! * Sum_{k=0..floor(n/2)} (n - 2*k)^(2*k)/(n - 2*k)!.

Original entry on oeis.org

1, 1, 1, 7, 49, 301, 6241, 74131, 1722337, 46346329, 1090339201, 48905462431, 1584330498961, 81705172522117, 4191355357015009, 223743062044497451, 16563314120270608321, 1027165911865738200241, 91346158358120706564097, 7395168869747626389974839
Offset: 0

Views

Author

Seiichi Manyama, Sep 15 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n\2, (n-2*k)^(2*k)/(n-2*k)!);
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, x^k/(k!*(1-(k*x)^2)))))

Formula

E.g.f.: Sum_{k>=0} x^k / (k! * (1 - (k*x)^2)).
Showing 1-2 of 2 results.