cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A353009 a(n) = Sum_{k=0..floor(n/2)} (n-2*k)^(n-2*k).

Original entry on oeis.org

1, 1, 5, 28, 261, 3153, 46917, 826696, 16824133, 388247185, 10016824133, 285699917796, 8926117272389, 303160806510049, 11120932942830405, 438197051187369424, 18457865006652382021, 827678458937524133601, 39364865940303189957445
Offset: 0

Views

Author

Seiichi Manyama, Apr 16 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[If[2*k == n, 1, (n - 2*k)^(n - 2*k)], {k, 0, Floor[n/2]}]; Array[a, 20, 0] (* Amiram Eldar, Apr 16 2022 *)
  • PARI
    a(n) = sum(k=0, n\2, (n-2*k)^(n-2*k));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k*x)^k)/(1-x^2))

Formula

G.f.: ( Sum_{k>=0} (k * x)^k )/(1 - x^2).
a(2*n-1) = A061787(n), a(2*n) = A061788(n) + 1. - Seiichi Manyama, Apr 17 2022

A353016 a(n) = Sum_{k=0..floor(n/2)} (n-2*k)^(2*k).

Original entry on oeis.org

1, 1, 1, 2, 5, 11, 33, 108, 357, 1405, 5713, 24670, 117413, 574007, 3004577, 16608120, 95057925, 576245913, 3622049809, 23693870554, 161816447365, 1140392550275, 8351286979745, 63206781102116, 493344133444389, 3980464191557205, 33029872125113937, 282290255465835382
Offset: 0

Views

Author

Seiichi Manyama, Apr 16 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := Sum[(n-2*k)^(2*k), {k, 0, Floor[n/2]}]; Array[a, 30, 0] (* Amiram Eldar, Apr 16 2022 *)
  • PARI
    a(n) = sum(k=0, n\2, (n-2*k)^(2*k));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1-(k*x)^2)))

Formula

G.f.: Sum_{k>=0} x^k / (1 - (k * x)^2).
a(n) = (A062811(n) + 1)/2 for n > 0. - Hugo Pfoertner, Apr 16 2022

A356834 a(n) = n! * Sum_{k=0..floor(n/2)} (n - 2*k)^n/(n - 2*k)!.

Original entry on oeis.org

1, 1, 4, 33, 448, 8105, 192576, 5946913, 226097152, 10389920913, 571788928000, 36818407010561, 2741300619657216, 234014330510734969, 22620660476040331264, 2457467449742570271105, 298061856229112792743936, 40058727579693211737837857
Offset: 0

Views

Author

Seiichi Manyama, Sep 16 2022

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) local k;  n! * add((n-2*k)^n/(n-2*k)!,k=0..floor(n/2)) end proc:
    map(f, [$0..20]); # Robert Israel, Sep 16 2022
  • Mathematica
    a[n_] := n! * Sum[(n - 2*k)^n/(n - 2*k)!, {k, 0, Floor[n/2]} ]; a[0] = 1; Array[a, 18, 0] (* Amiram Eldar, Sep 16 2022 *)
  • PARI
    a(n) = n!*sum(k=0, n\2, (n-2*k)^n/(n-2*k)!);
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k*x)^k/(k!*(1-(k*x)^2)))))

Formula

E.g.f.: Sum_{k>=0} (k * x)^k / (k! * (1 - (k * x)^2)).
Showing 1-3 of 3 results.