A353032 a(n) is the smallest number m with n divisors such that m+1 has n-1 divisors, or 0 if no such number exists.
0, 0, 4, 8, 81, 0, 0, 0, 441, 6723, 0, 0, 0, 0, 767495140624, 2024, 665416609183179841, 0, 0, 0, 2050624, 263168, 0, 0, 670801950625, 0, 10871232294189453124, 532899, 0, 0, 0, 0, 67634176, 0, 55471075527984793933106579132930662929175947116953798971172816083061185149078369140624
Offset: 1
Keywords
Examples
For n = 5; a(5) = 81 because 81 is the smallest number m such that tau(m) = tau(81) = 5 and tau(82) = tau(m) - 1 = 4.
Programs
-
Magma
Ax:=func
; [Ax(n): n in [1..5]]
Extensions
a(6)-a(8) from Jon E. Schoenfield, Apr 20 2022
a(9)-a(10), a(16), a(21)-a(22), a(28), a(33) from Jaroslav Krizek, Apr 20 2022
Remaining terms through a(34) from Jon E. Schoenfield, Apr 30 2022
a(35) from Jinyuan Wang, May 21 2022
Comments