A353047 Number of length n words on alphabet {0,1,2} that contain each of the subwords 01, 02, 10, 12, 20, and 21 as (not necessarily contiguous) subwords.
12, 108, 600, 2664, 10404, 37476, 127920, 420768, 1348476, 4242204, 13169160, 40490712, 123635028, 375623892, 1137095520, 3433306896, 10347106860, 31141984140, 93639862200, 281372571720, 845074016772, 2537235316548, 7615933808400, 22856659795584, 68588501433564
Offset: 5
Examples
a(5) = 12 because we have: {0, 1, 2, 0, 1}, {0, 1, 2, 1, 0}, {0, 2, 1, 0, 2}, {0, 2, 1, 2, 0}, {1, 0, 2, 0, 1}, {1, 0, 2, 1, 0}, {1, 2, 0, 1, 2}, {1, 2, 0, 2, 1}, {2, 0, 1, 0, 2}, {2, 0, 1, 2, 0}, {2, 1, 0, 1, 2}, {2, 1, 0, 2, 1}.
Links
- Index entries for linear recurrences with constant coefficients, signature (9,-31,51,-40,12).
Programs
-
Mathematica
nn = 15; vertices = Level[Outer[ List, {a, b, c}, {d, e, f}, {h, i, j}, {k, l, m}, {n, o, p}, {q, r, s}], {6}]; x = {a -> b, d -> e, i -> j, o -> p}; y = {b -> c, h -> i, k -> l, r -> s}; z = {e -> f, l -> m, n -> o, q -> r}; replacementlist = Table[vertices[[kk]] -> kk, {kk, 1, 729}]; G= Normal[SparseArray[Flatten[Table[Normal[Merge[ Map[{mm, vertices[[mm]] /. # /. replacementlist} -> 1 &, {x, y, z}], Total]], {mm, 1, 729}]]]]; Iwg = Inverse[IdentityMatrix[729] - w G]; CoefficientList[ Series[Iwg[[1, 729]], {w, 0, nn}], w]
Formula
G.f.: (12*x^5)/((1 - 2*x)^2*(1 - x)^2*(1 - 3*x)).
Comments