A353055 Successive records of function f(x) = log(abs(pi(x) - R(x)))/log(x) where pi(x) is the number of primes <= x and R(x) is Riemann's prime counting function.
2, 4, 7, 10, 19, 47, 58, 73, 109, 113, 1109, 1123, 1129, 1307, 1321, 1327, 1418, 1419, 1420, 1421, 1422, 5379, 5380, 7449, 7450, 10343, 11676, 11761, 11762, 11763, 11764, 11765, 11766, 11767, 11768, 11769, 11770, 11771, 11772, 11773, 11774, 11775, 11776, 19360, 19361, 19362, 19363, 19364, 19365, 19366, 19367, 19368, 19369, 19370, 19371, 19372
Offset: 1
Keywords
Examples
x f(x) comment 1 -infinity a(1) 2 -0.8862754573970588 a(2) 3 -4.883591467412115 removed because f(3) < f(2) 4 -0.614424415865155 a(3) 5 -1.0695141714266385 removed because f(5) < f(4) ... ...
Links
- Lowell Schoenfeld, Sharper Bounds for the Chebyshev Functions theta(x) and psi(x). II, Mathematics of Computation Vol. 30, No. 134 (Apr., 1976), pp. 337-360.
Programs
-
Mathematica
gg = {1}; imax = -1000; Do[ kk = Log[Abs[PrimePi[x] - RiemannR[x]]]/Log[x]; If[kk > imax, AppendTo[gg, x]; imax = kk], {x, 2, 20000}]; gg
Comments