A353056 Composite numbers of the form k^2+k+1 all of whose prime factors are of that same form.
21, 91, 273, 343, 507, 651, 1333, 4557, 6321, 6643, 27391, 36673, 50851, 65793, 83811, 105301, 139503, 190533, 194923, 217623, 234741, 391251, 545383, 1647373, 1961401, 2032051, 2376223, 4517751, 6118203, 6484663, 11590621, 13180531, 14535157, 20155611, 28371603, 35646871
Offset: 1
Keywords
Examples
21 = 4^2+4+1 and its factors are 3 and 7, terms of A002383. So 21 is a term.
Links
- David A. Corneth, Table of n, a(n) for n = 1..318
- Cody S. Hansen and Pace P. Nielsen, Prime factors of phi3(x) of the same form, arXiv:2204.08971 [math.NT], 2022.
Programs
-
Maple
q:= n-> not isprime(n) and andmap(p-> issqr(4*p-3), numtheory[factorset](n)): select(q, [k*(k+1)+1$k=4..6000])[]; # Alois P. Heinz, Apr 20 2022
-
Mathematica
Select[Table[n^2 + n + 1, {n, 1, 6000}], CompositeQ[#] && AllTrue[FactorInteger[#][[;; , 1]], IntegerQ@Sqrt[4*#1 - 3] &] &] (* Amiram Eldar, Apr 20 2022 *)
-
PARI
lista(nn) = {for (n=1, nn, my(x=n^2+n+1); if (! isprime(x), my(fa=factor(x), ok=1); for (k=1, #fa~, my(fk=fa[k,1]); if (! issquare(4*fk-3), ok = 0);); if (ok, print1(x, ", "));););}
-
Python
from sympy import isprime, factorint from itertools import count, takewhile def agento(N): # generator of terms up to limit N form = set(takewhile(lambda x: x<=N, (k**2 + k + 1 for k in count(1)))) for t in sorted(form): if not isprime(t) and all(p in form for p in factorint(t)): yield t print(list(agento(10**8))) # Michael S. Branicky, Apr 20 2022