A353065 Euler transform of odd primes.
1, 3, 11, 32, 92, 239, 608, 1465, 3450, 7858, 17525, 38165, 81653, 171497, 354785, 723084, 1454642, 2889854, 5676607, 11031046, 21224439, 40453596, 76428636, 143192339, 266172016, 491072611, 899583306, 1636775949, 2958900040, 5316004485, 9494514599
Offset: 0
Keywords
Programs
-
Maple
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add( d*ithprime(d+1), d=numtheory[divisors](j)), j=1..n)/n) end: seq(a(n), n=0..30); # Alois P. Heinz, Apr 21 2022
-
Mathematica
nmax = 30; CoefficientList[Series[Product[1/(1 - x^k)^Prime[k + 1], {k, 1, nmax}], {x, 0, nmax}], x] a[0] = 1; a[n_] := a[n] = (1/n) Sum[Sum[d Prime[d + 1], {d, Divisors[k]}] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 30}]
Formula
G.f.: Product_{k>=1} 1 / (1 - x^k)^prime(k+1).