cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353065 Euler transform of odd primes.

Original entry on oeis.org

1, 3, 11, 32, 92, 239, 608, 1465, 3450, 7858, 17525, 38165, 81653, 171497, 354785, 723084, 1454642, 2889854, 5676607, 11031046, 21224439, 40453596, 76428636, 143192339, 266172016, 491072611, 899583306, 1636775949, 2958900040, 5316004485, 9494514599
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 21 2022

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add(
          d*ithprime(d+1), d=numtheory[divisors](j)), j=1..n)/n)
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Apr 21 2022
  • Mathematica
    nmax = 30; CoefficientList[Series[Product[1/(1 - x^k)^Prime[k + 1], {k, 1, nmax}], {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = (1/n) Sum[Sum[d Prime[d + 1], {d, Divisors[k]}] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 30}]

Formula

G.f.: Product_{k>=1} 1 / (1 - x^k)^prime(k+1).