A352915 Moebius transform of odd primes.
3, 2, 4, 6, 10, 8, 16, 12, 22, 16, 34, 18, 40, 26, 36, 36, 58, 28, 68, 36, 56, 44, 86, 44, 88, 58, 78, 56, 110, 48, 128, 78, 98, 86, 122, 66, 160, 94, 126, 94, 178, 76, 190, 108, 124, 120, 220, 94, 210, 114, 174, 132, 248, 112, 216, 148, 196, 162, 278, 96
Offset: 1
Keywords
Programs
-
Mathematica
Table[DivisorSum[n, MoebiusMu[n/#] Prime[# + 1] &], {n, 1, 60}]
-
PARI
a(n) = sumdiv(n, d, moebius(n/d)* prime(d+1)); \\ Michel Marcus, Apr 27 2022
Formula
Sum_{n>=1} a(n) * x^n / (1 - x^n) = Sum_{n>=1} prime(n+1) * x^n.
a(n) = Sum_{d|n} mu(n/d)* prime(d+1).