A353238 Perfect powers that are divisible by 3.
9, 27, 36, 81, 144, 216, 225, 243, 324, 441, 576, 729, 900, 1089, 1296, 1521, 1728, 1764, 2025, 2187, 2304, 2601, 2916, 3249, 3375, 3600, 3969, 4356, 4761, 5184, 5625, 5832, 6084, 6561, 7056, 7569, 7776, 8100, 8649, 9216, 9261, 9801, 10404, 11025, 11664, 12321
Offset: 1
Examples
36 is a term since 36 = (2*3)^2 is a power of a multiple of 3.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
q:= n-> igcd(seq(i[2], i=ifactors(n)[2]))>1: select(q, [9*i$i=1..2000])[]; # Alois P. Heinz, May 05 2022
-
Mathematica
Select[9*Range[1400], GCD @@ FactorInteger[#][[All, 2]] > 1 &]
-
PARI
isok(k) = ispower(k) && !(k % 3); \\ Michel Marcus, May 02 2022
Formula
a(n) has the form (3*m)^k for some positive integer m := m(n) and some k > 1.
Sum_{n>=1} 1/a(n) = -Sum_{k>=2} mu(k)*zeta(k)/3^k = 0.2306128559... - Amiram Eldar, Jul 02 2022
Comments