cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A353161 Product_{n>=1} (1 + x^n)^a(n) = 1 + x + Sum_{n>=2} prime(n-1) * x^n.

Original entry on oeis.org

1, 2, 1, 3, 1, 2, -1, 1, -3, -1, 4, 1, 5, 2, -4, -4, -9, 0, -3, 14, 19, 4, 6, -38, -27, -17, 5, 59, 50, 103, -49, -100, -142, -222, 83, 138, 468, 362, 0, -313, -1215, -599, -526, 961, 2572, 1837, 1673, -2858, -4516, -6182, -3880, 5981, 9282, 18218, 7414, -8554, -24446
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 28 2022

Keywords

Comments

Inverse weigh transform of {1, primes}.

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(a(i), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= proc(n) option remember; `if`(n=1, 1, ithprime(n-1))-b(n, n-1) end:
    seq(a(n), n=1..60);  # Alois P. Heinz, Apr 28 2022
  • Mathematica
    p[n_] := If[n == 1, 1, Prime[n - 1]]; b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[a[i], j] b[n - i j, i - 1], {j, 0, n/i}]]]; a[n_] := a[n] = p[n] - b[n, n - 1]; Table[a[n], {n, 1, 57}]

A353169 Expansion of Product_{k>=1} (1 + x^k)^prime(k+1).

Original entry on oeis.org

1, 3, 8, 23, 57, 137, 317, 705, 1524, 3224, 6667, 13521, 26980, 52985, 102624, 196248, 370849, 693159, 1282537, 2350584, 4269912, 7692044, 13748080, 24390170, 42966637, 75187515, 130737631, 225957706, 388279308, 663533206, 1127936772, 1907676978, 3210783522, 5378798428
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 28 2022

Keywords

Comments

Weigh transform of odd primes.

Crossrefs

Programs

  • Mathematica
    nmax = 33; CoefficientList[Series[Product[(1 + x^k)^Prime[k + 1], {k, 1, nmax}], {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = (1/n) Sum[Sum[(-1)^(k/d + 1) d Prime[d + 1], {d, Divisors[k]}] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 33}]
Showing 1-2 of 2 results.