cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353183 Number of numbers < 10^n in which more than half of the digits are the same.

Original entry on oeis.org

9, 18, 270, 603, 8307, 19737, 265257, 653742, 8672022, 21893256, 288028728, 739651770, 9675345546, 25164110070, 327788101782, 860977172187, 11178969569667, 29595164756157, 383284574197677, 1021259144052675, 13198843891723059, 35357274978994503, 456176418630573735, 1227566989710948393
Offset: 1

Views

Author

Zhining Yang, Apr 29 2022

Keywords

Examples

			a(2) = 18 because there are 18 numbers less than 10^2 in which more than half of the digits are the same: {1,2,3,4,5,6,7,8,9,11,22,33,44,55,66,77,88,99}.
		

Crossrefs

Cf. A353181, A353182 (first differences).

Programs

  • Mathematica
    a[n_]:=Sum[Sum[Binomial[m,k]9^(m-k+1),{k,Floor[m/2]+1,m}],{m,1,n}]; Array[a,24] (* Stefano Spezia, Apr 29 2022 *)
  • Python
    import math
    def a(n):
        return(sum(sum(math.comb(m,i)*9**(m-i+1) for i in range(m//2+1, m+1)) for m in range(1, n+1)))
    print([a(i) for i in range(1, 21)])
    
  • Python
    def a(n):
        r=[0, 9, 18, 270, 603]
        for i in range(n):
            r.append(-((1440+720*i)*r[i]+(-3024-1152*i)*r[1+i]+(1668+448*i)*r[2+i]+(-28-4*i)*r[3+i]+(-61-13*i)*r[4+i])//(5+i))
        return r[n]
    print([a(i) for i in range(1, 21)])

Formula

a(n) = Sum_{m=1..n} Sum_{k=floor(m/2)+1..m} C(m,k)*9^(m-k+1).
a(n+4) = ((16560 + 14040*n + 2880*n^2)*a(n) - (18036 + 15444*n + 3168*n^2)*a(n+1) + (858 + 934*n + 208*n^2)*a(n+2) + (678 + 517*n + 88*n^2)*a(n+3))/(60 + 47*n + 8*n^2).
a(n+5) = -((1440 + 720*n)*a(n) + (-3024 - 1152*n)*a(n+1) + (1668 + 448*n)*a(n+2) + (-28 - 4*n)*a(n+3) + (-61 - 13*n)*a(n+4))/(5+n).