cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353267 The least number with the same prime factorization pattern (A348717) as A332449(n) = A005940(1+(3*A156552(n))).

Original entry on oeis.org

1, 4, 4, 10, 4, 16, 4, 30, 10, 36, 4, 22, 4, 100, 16, 90, 4, 40, 4, 250, 36, 196, 4, 66, 10, 484, 30, 490, 4, 64, 4, 270, 100, 676, 16, 154, 4, 1156, 196, 750, 4, 144, 4, 1210, 22, 1444, 4, 198, 10, 84, 484, 1690, 4, 120, 36, 1470, 676, 2116, 4, 34, 4, 3364, 250, 810, 100, 400, 4, 2890, 1156, 324, 4, 462, 4, 3844
Offset: 1

Views

Author

Antti Karttunen, Apr 09 2022

Keywords

Crossrefs

Cf. also A305897 (rgs-transform), A352892, A353268.

Programs

  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
    A156552(n) = { my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res };
    A332449(n) = A005940(1+(3*A156552(n)));
    A348717(n) = { my(f=factor(n)); if(#f~>0, my(pi1=primepi(f[1, 1])); for(k=1, #f~, f[k, 1] = prime(primepi(f[k, 1])-pi1+1))); factorback(f); }; \\ From A348717
    A353267(n) = A348717(A332449(n));

Formula

a(n) = A348717(A332449(n)) = A332449(A348717(n)).