A366291 Lexicographically earliest infinite sequence such that a(i) = a(j) => A353271(i) = A353271(j) for all i, j >= 1, where A353271(n) is the numerator of n / A005940(1+(3*A156552(n))).
1, 1, 1, 2, 1, 3, 1, 4, 3, 5, 1, 6, 1, 7, 5, 8, 1, 9, 1, 2, 7, 10, 1, 4, 5, 11, 9, 2, 1, 12, 1, 13, 10, 14, 7, 15, 1, 16, 11, 4, 1, 7, 1, 2, 12, 17, 1, 8, 7, 18, 14, 2, 1, 9, 10, 4, 16, 19, 1, 20, 1, 21, 3, 22, 11, 23, 1, 2, 17, 24, 1, 25, 1, 26, 18, 2, 10, 27, 1, 8, 28, 29, 1, 30, 14, 31, 19, 4, 1, 32, 11, 2, 21, 33, 16
Offset: 1
Keywords
Links
Programs
-
PARI
up_to = 65537; rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
-
PARI
A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); }; A156552(n) = { my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res }; A332449(n) = A005940(1+(3*A156552(n))); A353271(n) = (n / gcd(n, A332449(n))); v366291 = rgs_transform(vector(up_to,n,A353271(n))); A366291(n) = v366291[n];
Comments