A353291 Integers whose cube is the sum of the cubes of four primes, not necessarily distinct.
12, 66, 336, 504, 588, 602, 756, 1092, 1248, 1470, 1638, 1848, 2142, 2184, 2289, 2394, 2772, 3094, 3192, 3276, 3885, 3948, 4242, 4284, 4368, 4410, 4578, 4620, 4788, 4830, 4998, 5166, 5460, 5544, 5586, 5670, 5754, 6006, 6216, 6552, 6636, 6708, 6804, 6930, 7014
Offset: 1
Keywords
Examples
12 is a term because 3^3 + 3^3 + 7^3 + 11^3 = 1728 = 12^3.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..53
- Zhichun Zhai, Problems related to Waring-Goldbach problem involving cubes of primes, arXiv:2201.07346 [math.GM], 2022. See Table 3 p. 4.
Programs
-
PARI
list(lim)=my(v=List(), P=apply(p->p^3, primes(sqrtnint(lim\=1, 3)))); foreach(P, p, foreach(P, q, foreach(P, r, my(s=p+q+r, t); for(i=1, #P, t=s+P[i]; if(t>lim, break); if (ispower(t, 3, &rr), listput(v, rr)))))); v = Set(v);
Extensions
a(8) and beyond from Michael S. Branicky, Apr 09 2022