A353311
Number of distinct terms encountered when A353313 is iterated, or -1 if the iteration never reaches a finite cycle.
Original entry on oeis.org
1, 4, 104, 4, 4, 103, 105, 5, 104, 4, 103, 4, 5, 106, 4, 103, 6, 105, 106, 103, 3, 6, 108, 3, 105, 3, 104, 5, 3, 6, 104, 108, 110, 5, 103, 3, 6, 14, 116, 107, 3, 54, 5, 57, 3, 103, 7, 104, 6, 3, 6, 106, 9, 106, 107, 109, 12, 104, 7, 103, 3, 115, 5, 7, 13, 115, 109, 118, 21, 3, 53, 5, 106, 121, 56, 3, 59, 124, 105
Offset: 0
Starting from n=2 and iterating A353313, we obtain the following 104 terms [2, 5, 10, 19, 34, 59, 100, 169, 284, 475, 794, 1325, 2210, 3685, 6144, 2048, 3415, 5694, 1898, 3165, 1055, 1760, 2935, 4894, 8159, 13600, 22669, 37784, 62975, 104960, 174935, 291560, 485935, 809894, 1349825, 2249710, 3749519, 6249200, 10415335, 17358894, 5786298, 1928766, 642922, 1071539, 1785900, 595300, 992169, 330723, 110241, 36747, 12249, 4083, 1361, 2270, 3785, 6310, 10519, 17534, 29225, 48710, 81185, 135310, 225519, 75173, 125290, 208819, 348034, 580059, 193353, 64451, 107420, 179035, 298394, 497325, 165775, 276294, 92098, 153499, 255834, 85278, 28426, 47379, 15793, 26324, 43875, 14625, 4875, 1625, 2710, 4519, 7534, 12559, 20934, 6978, 2326, 3879, 1293, 431, 720, 240, 80, 135, 45, 15] before the iteration returns to 5 again, therefore a(2) = 104.
-
A353313(n) = { my(r=(n%3)); if(!r,n/3,((5*((n-r)/3)) + r + 3)); };
A353311(n) = { my(visited = Map()); for(j=0, oo, if(mapisdefined(visited, n), return(j), mapput(visited, n, j)); n = A353313(n)); };
A353310
Number of terms encountered when iterating A353313, before reaching the first term that is a part of a finite cycle, or -1 if no finite cycle is ever reached.
Original entry on oeis.org
0, 0, 1, 0, 0, 0, 2, 2, 1, 0, 0, 1, 1, 3, 1, 0, 0, 2, 3, 0, 0, 3, 5, 0, 2, 0, 1, 1, 0, 0, 1, 5, 7, 2, 0, 0, 2, 11, 13, 4, 0, 51, 2, 54, 0, 0, 4, 1, 0, 0, 0, 3, 3, 3, 4, 6, 6, 1, 4, 0, 0, 12, 2, 4, 10, 12, 6, 15, 15, 0, 50, 2, 3, 18, 53, 0, 56, 21, 2, 3, 0, 2, 5, 19, 0, 0, 62, 1, 59, 2, 2, 27, 65, 6, 5, 5, 8, 90, 8
Offset: 0
For n = 1, when iterating with A353313, we obtain 1 -> 4 -> 9 -> 3 -> 1 -> etc, thus 1 itself is included in the closed cycle, and therefore a(1) = 0.
For n = 6, when iterating with A353313, we obtain 6 -> 2 -> 5 -> ..., and after 103 more iterations we obtain 5 again (see examples in A353311 and A353312), thus only the two initial numbers, 6 and 2 are outside of the final closed cycle, therefore a(6) = 2.
-
A353313(n) = { my(r=(n%3)); if(!r,n/3,((5*((n-r)/3)) + r + 3)); };
A353310(n) = { my(visited = Map(), p); for(j=0, oo, if(mapisdefined(visited, n, &p), return(p), mapput(visited, n, j)); n = A353313(n)); };
A353312
Size of the finite cycle eventually reached by iterating A353313, or -1 if no finite cycle is ever reached.
Original entry on oeis.org
1, 4, 103, 4, 4, 103, 103, 3, 103, 4, 103, 3, 4, 103, 3, 103, 6, 103, 103, 103, 3, 3, 103, 3, 103, 3, 103, 4, 3, 6, 103, 103, 103, 3, 103, 3, 4, 3, 103, 103, 3, 3, 3, 3, 3, 103, 3, 103, 6, 3, 6, 103, 6, 103, 103, 103, 6, 103, 3, 103, 3, 103, 3, 3, 3, 103, 103, 103, 6, 3, 3, 3, 103, 103, 3, 3, 3, 103, 103, 3, 103
Offset: 0
Starting from n=2 and iterating A353313, we obtain the following 104 terms [2, 5, 10, 19, 34, 59, 100, 169, 284, 475, 794, 1325, 2210, 3685, 6144, 2048, 3415, 5694, 1898, 3165, 1055, 1760, 2935, 4894, 8159, 13600, 22669, 37784, 62975, 104960, 174935, 291560, 485935, 809894, 1349825, 2249710, 3749519, 6249200, 10415335, 17358894, 5786298, 1928766, 642922, 1071539, 1785900, 595300, 992169, 330723, 110241, 36747, 12249, 4083, 1361, 2270, 3785, 6310, 10519, 17534, 29225, 48710, 81185, 135310, 225519, 75173, 125290, 208819, 348034, 580059, 193353, 64451, 107420, 179035, 298394, 497325, 165775, 276294, 92098, 153499, 255834, 85278, 28426, 47379, 15793, 26324, 43875, 14625, 4875, 1625, 2710, 4519, 7534, 12559, 20934, 6978, 2326, 3879, 1293, 431, 720, 240, 80, 135, 45, 15] before the iteration returns to 5 again, in other words, forming a finite cycle of length 103, therefore a(2) = 103.
-
A353313(n) = { my(r=(n%3)); if(!r,n/3,((5*((n-r)/3)) + r + 3)); };
A353312(n) = { my(visited = Map()); for(j=1, oo, if(mapisdefined(visited, n), return(j-mapget(visited, n)), mapput(visited, n, j)); n = A353313(n)); };
A353305
The smallest number reached after n when iterating map x -> A353313(x) and starting from x=n, or -1 if no finite cycle is ever reached.
Original entry on oeis.org
0, 1, 5, 1, 1, 5, 2, 14, 5, 1, 5, 20, 1, 5, 25, 5, 16, 5, 2, 5, 20, 7, 5, 23, 5, 25, 5, 1, 28, 16, 5, 2, 5, 11, 5, 20, 1, 11, 5, 5, 23, 20, 14, 20, 25, 5, 25, 5, 16, 28, 16, 5, 16, 5, 2, 5, 16, 5, 11, 5, 20, 5, 20, 7, 11, 5, 5, 5, 16, 23, 20, 23, 5, 5, 20, 25, 20, 5, 5, 25, 5, 1, 5, 5, 28, 16, 20, 16, 20, 16, 5, 5
Offset: 0
Starting from n=2 and iterating A353313, we obtain the following 104 terms [2, 5, 10, 19, 34, 59, 100, 169, 284, 475, 794, 1325, 2210, 3685, 6144, 2048, 3415, 5694, 1898, 3165, 1055, 1760, 2935, 4894, 8159, 13600, 22669, 37784, 62975, 104960, 174935, 291560, 485935, 809894, 1349825, 2249710, 3749519, 6249200, 10415335, 17358894, 5786298, 1928766, 642922, 1071539, 1785900, 595300, 992169, 330723, 110241, 36747, 12249, 4083, 1361, 2270, 3785, 6310, 10519, 17534, 29225, 48710, 81185, 135310, 225519, 75173, 125290, 208819, 348034, 580059, 193353, 64451, 107420, 179035, 298394, 497325, 165775, 276294, 92098, 153499, 255834, 85278, 28426, 47379, 15793, 26324, 43875, 14625, 4875, 1625, 2710, 4519, 7534, 12559, 20934, 6978, 2326, 3879, 1293, 431, 720, 240, 80, 135, 45, 15] before the iteration returns to 5 again, thus after the initial 2, 5 is the smallest number encountered, therefore a(2) = 5.
-
A353313(n) = { my(r=(n%3)); if(!r,n/3,((5*((n-r)/3)) + r + 3)); };
A353305(n) = { my(visited = Map(), m=0); for(j=1, oo, n = A353313(n); if(!m, m=n, m=min(m,n)); if(mapisdefined(visited, n), return(m), mapput(visited, n, j))); };
A353309
The maximum sum of base-3 digits occurring among all numbers reached after n, when iterating map x -> A353313(x) starting from x=n, or -1 if no finite cycle is ever reached.
Original entry on oeis.org
0, 2, 18, 2, 2, 18, 18, 6, 18, 2, 18, 5, 2, 18, 6, 18, 6, 18, 18, 18, 5, 6, 18, 5, 18, 6, 18, 2, 5, 6, 18, 18, 18, 5, 18, 5, 2, 6, 18, 18, 5, 13, 6, 13, 6, 18, 8, 18, 6, 5, 6, 18, 6, 18, 18, 18, 8, 18, 5, 18, 5, 18, 5, 6, 6, 18, 18, 18, 8, 5, 13, 5, 18, 18, 13, 6, 13, 18, 18, 8, 18, 2, 18, 18, 5, 6, 13, 6, 13, 6
Offset: 0
When starting iterating A353313 from n=7, we obtain -> 14 -> 25 -> 44 -> 75 -> 25 -> 44 -> 75 -> 25 -> etc, ad infinitum. Applying A053735 to all distinct terms encountered after 7, that is [14, 25, 44, 75] gives us base-3 digit sums [4, 5, 6, 5], therefore a(7) = 6, which is the largest sum.
-
A053735(n) = sumdigits(n, 3);
A353313(n) = { my(r=(n%3)); if(!r,n/3,((5*((n-r)/3)) + r + 3)); };
A353309(n) = { my(visited = Map(), m=0); for(j=1, oo, n = A353313(n); m=max(m,A053735(n)); if(mapisdefined(visited, n), return(m), mapput(visited, n, j))); };
A353306
Numbers k such that 1 is in the transitive closure of the map x -> A353313(x) when starting iterating from x=k.
Original entry on oeis.org
1, 3, 4, 9, 12, 27, 36, 81, 108, 193, 243, 324, 346, 436, 579, 729, 972, 1038, 1308, 1522, 1737, 1867, 2187, 2353, 2539, 2916, 3114, 3493, 3924, 4234, 4566, 5211, 5601, 5824, 6286, 6561, 7059, 7617, 8748, 9342, 9446, 9709, 10479, 10886, 11756, 11772, 12702, 13698, 13772, 14792, 14806, 15633, 15745, 16184, 16803, 17003
Offset: 1
-
A353313(n) = { my(r=(n%3)); if(!r,n/3,((5*((n-r)/3)) + r + 3)); };
A353305(n) = { my(visited = Map(), m=0); for(j=1, oo, n = A353313(n); if(!m, m=n, m=min(m,n)); if(mapisdefined(visited, n), return(m), mapput(visited, n, j))); };
isA353306(n) = (1==A353305(n));
A353314
If n is of the form 3k, then a(n) = n, and if n is of the form 3k+r, with r = 1 or 2, then a(n) = 5*k + 3 + r.
Original entry on oeis.org
0, 4, 5, 3, 9, 10, 6, 14, 15, 9, 19, 20, 12, 24, 25, 15, 29, 30, 18, 34, 35, 21, 39, 40, 24, 44, 45, 27, 49, 50, 30, 54, 55, 33, 59, 60, 36, 64, 65, 39, 69, 70, 42, 74, 75, 45, 79, 80, 48, 84, 85, 51, 89, 90, 54, 94, 95, 57, 99, 100, 60, 104, 105, 63, 109, 110, 66, 114, 115, 69, 119, 120, 72, 124, 125, 75, 129, 130
Offset: 0
- Michael De Vlieger, Table of n, a(n) for n = 0..10000
- Nicholas Drozd, A Busy Beaver Champion Derived from Scratch
- Nicholas Drozd, Feedback to Doron Zeilberger's opinion #155, Jan. 4, 2022.
- Index entries for linear recurrences with constant coefficients, signature (0,0,2,0,0,-1).
Cf.
A353313 (variant),
A349876 (the first multiple of 3 reached when iterating this sequence),
A349877 (number of iterations to reach the first multiple of 3),
A353327 (
A102899).
-
Array[If[#2 == 0, #1, 5 #1 + 3 + #2 & @@ QuotientRemainder[#1, 3]] & @@ {#, Mod[#, 3]} &, 78, 0] (* Michael De Vlieger, Apr 14 2022 *)
-
A353314(n) = { my(r=(n%3)); if(!r,n,((5*((n-r)/3)) + r + 3)); };
A349876
If n is divisible by 3, a(n) = n; otherwise n = 3k + r with r in {1, 2} and a(n) = a(5k + r + 3). a(n) = -1 if no multiple of three will be ever reached by iterating A353314.
Original entry on oeis.org
0, 9, 6144, 3, 9, 6144, 6, 75, 15, 9, 6144, 60, 12, 24, 75, 15, 144, 30, 18, 6144, 60, 21, 39, 69, 24, 75, 45, 27, 84, 144, 30, 54, 159, 33, 6144, 60, 36, 309, 519, 39, 69, 1560, 42, 210, 75, 45, 225, 135, 48, 84, 144, 51, 150, 90, 54, 159, 450, 57, 99, 6144, 60, 294, 105, 63
Offset: 0
a(1) = a(3*0 + 1) = a(5*0 + 1 + 3) = a(4)
a(4) = a(3*1 + 1) = a(5*1 + 1 + 3) = a(9)
a(9) = 9
Trajectory of a(1): 4, 9
a(7) = a(3*2 + 1) = a(5*2 + 1 + 3) = a(14)
a(14) = a(3*4 + 2) = a(5*4 + 2 + 3) = a(25)
a(25) = a(3*8 + 1) = a(5*8 + 1 + 3) = a(44)
a(44) = a(3*14 + 2) = a(5*14 + 2 + 3) = a(75)
a(75) = 75
Trajectory of a(7): 14, 25, 44, 75
Trajectory of a(2): 5, 10, 19, 34, 59, 100, 169, 284, 475, 794, 1325, 2210, 3685, 6144.
-
a[n_] := a[n] = Module[{qr = QuotientRemainder[n, 3]}, If[qr[[2]] == 0, n, a[5*qr[[1]] + qr[[2]] + 3]]]; Array[a, 64, 0] (* Amiram Eldar, Jan 04 2022 *)
-
a(n) = my(d=divrem(n, 3)); if (d[2], a(5*d[1]+d[2]+3), n); \\ Michel Marcus, Dec 05 2021
-
def a(n):
while True:
quot, rem = divmod(n, 3)
if rem == 0:
return n
n = (5 * quot) + rem + 3
Formal escape clause added to the definition by
Antti Karttunen, Apr 14 2022
A349877
a(n) is the number of times the map x -> A353314(x) needs to be applied to n to reach a multiple of 3, or -1 if the trajectory never reaches a multiple of 3.
Original entry on oeis.org
0, 2, 14, 0, 1, 13, 0, 4, 1, 0, 12, 3, 0, 1, 3, 0, 4, 1, 0, 11, 2, 0, 1, 2, 0, 2, 1, 0, 2, 3, 0, 1, 3, 0, 10, 1, 0, 4, 5, 0, 1, 7, 0, 3, 1, 0, 3, 2, 0, 1, 2, 0, 2, 1, 0, 2, 4, 0, 1, 9, 0, 3, 1, 0, 3, 4, 0, 1, 5, 0, 6, 1, 0, 4, 2, 0, 1, 2, 0, 2, 1, 0, 2, 7, 0, 1, 4, 0, 6, 1, 0, 6, 3, 0, 1, 3, 0, 5, 1, 0, 8, 2, 0
Offset: 0
a(1) = 2 : 1 -> 4 -> 9 (as it takes two applications of A353314 to reach a multiple of three),
a(2) = 14 : 2 -> 5 -> 10 -> 19 -> 34 -> 59 -> 100 -> 169 -> 284 -> 475 -> 794 -> 1325 -> 2210 -> 3685 -> 6144
a(3) = 0 : 3 (as the starting point 3 is already a multiple of 3).
a(4) = 1 : 4 -> 9
a(7) = 4 : 7 -> 14 -> 25 -> 44 -> 75.
-
A353314(n) = { my(r=(n%3)); if(!r,n,((5*((n-r)/3)) + r + 3)); };
A349877(n) = { my(k=0); while(n%3, k++; n = A353314(n)); (k); }; \\ Antti Karttunen, Apr 14 2022
-
import itertools
def f(n):
for i in itertools.count():
quot, rem = divmod(n, 3)
if rem == 0:
return i
n = (5 * quot) + rem + 3
Showing 1-9 of 9 results.
Comments