cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A353362 Number of divisors d of n for which A156552(d) is a multiple of 3.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 1, 2, 1, 1, 1, 3, 1, 2, 1, 3, 2, 2, 1, 2, 2, 1, 2, 2, 1, 3, 1, 3, 1, 2, 1, 4, 1, 1, 2, 4, 1, 2, 1, 3, 2, 2, 1, 3, 2, 3, 1, 2, 1, 2, 2, 2, 2, 1, 1, 4, 1, 2, 3, 4, 1, 3, 1, 3, 1, 2, 1, 4, 1, 1, 2, 2, 1, 2, 1, 5, 3, 2, 1, 4, 2, 1, 2, 4, 1, 5, 2, 3, 1, 2, 1, 3, 1, 2, 2, 5, 1, 3, 1, 2, 3
Offset: 1

Views

Author

Antti Karttunen, Apr 15 2022

Keywords

Crossrefs

Inverse Möbius transform of A353269.
Cf. also A353352.
Differs from A353332 for the first time at n=30, where a(30) = 3, while A353332(30) = 2.

Programs

  • PARI
    A156552(n) = { my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res };
    A353269(n) = (!(A156552(n)%3));
    A353362(n) = sumdiv(n,d,A353269(d));

Formula

a(n) = Sum_{d|n} A353269(d).
a(n) = A000005(n) - A353361(n).
a(p) = 1 for all primes p.
a(n) = a(A003961(n)) = a(A348717(n)), for all n >= 1.

A353351 Number of divisors d of n for which A048675(d) is not a multiple of 3.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 2, 2, 3, 1, 4, 1, 2, 2, 3, 1, 4, 1, 4, 3, 3, 1, 5, 2, 2, 2, 4, 1, 5, 1, 4, 2, 3, 2, 6, 1, 2, 3, 5, 1, 5, 1, 4, 4, 3, 1, 6, 2, 4, 2, 4, 1, 5, 3, 5, 3, 2, 1, 8, 1, 3, 4, 4, 2, 5, 1, 4, 2, 5, 1, 8, 1, 2, 4, 4, 2, 5, 1, 7, 3, 3, 1, 8, 3, 2, 3, 5, 1, 8, 3, 4, 2, 3, 2, 8, 1, 4, 4, 6, 1, 5, 1, 5, 5
Offset: 1

Views

Author

Antti Karttunen, Apr 15 2022

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := e*2^(PrimePi[p] - 1); q[1] = False; q[n_] := ! Divisible[Plus @@ f @@@ FactorInteger[n], 3]; a[n_] := DivisorSum[n, 1 &, q[#] &]; Array[a, 100] (* Amiram Eldar, Apr 15 2022 *)
  • PARI
    A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; };
    A353350(n) = (0==(A048675(n)%3));
    A353351(n) = sumdiv(n,d,!A353350(d));

Formula

a(n) = Sum_{d|n} (1-A353350(d)).
a(n) = A000005(n) - A353352(n).
a(p) = 1 for all primes p.
a(n) = a(A003961(n)) = a(A348717(n)), for all n >= 1.
a(n) = A353328(n) + A353329(n).

A353364 Inverse Möbius transform of A332814.

Original entry on oeis.org

0, 1, -1, 1, 1, -1, -1, 2, -1, 2, 1, -2, -1, -1, 1, 2, 1, 0, -1, 3, -2, 2, 1, -2, 1, -1, -2, -2, -1, 1, 1, 3, 1, 2, -1, -1, -1, -1, -2, 4, 1, -2, -1, 3, 2, 2, 1, -3, -1, 3, 1, -2, -1, -2, 2, -2, -2, -1, 1, 2, -1, 2, -3, 3, -1, 1, 1, 3, 1, -2, -1, 0, 1, -1, 0, -2, 1, -2, -1, 5, -2, 2, 1, -4, 2, -1, -2, 4, -1, 3, -2, 3
Offset: 1

Views

Author

Antti Karttunen, Apr 15 2022

Keywords

Crossrefs

Programs

  • PARI
    A156552(n) = {my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552
    A332814(n) = { my(u=A156552(n)%3); if(2==u,-1,u); };
    A353364(n) = sumdiv(n,d,A332814(d));

Formula

a(n) = Sum_{d|n} A332814(d).
For all n >= 1, a(A003961(n)) = -a(n), a(A000040(n)) = ((-1)^(n-1)).
Showing 1-3 of 3 results.