cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353379 Primepi-based variant of the arithmetic derivative applied to the prime shadow of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 4, 1, 3, 2, 4, 1, 7, 1, 4, 4, 4, 1, 7, 1, 7, 4, 4, 1, 11, 2, 4, 3, 7, 1, 12, 1, 5, 4, 4, 4, 12, 1, 4, 4, 11, 1, 12, 1, 7, 7, 4, 1, 15, 2, 7, 4, 7, 1, 11, 4, 11, 4, 4, 1, 20, 1, 4, 7, 6, 4, 12, 1, 7, 4, 12, 1, 19, 1, 4, 7, 7, 4, 12, 1, 15, 4, 4, 1, 20, 4, 4, 4, 11, 1, 20, 4, 7, 4, 4, 4, 21, 1, 7, 7
Offset: 1

Views

Author

Antti Karttunen, Apr 28 2022

Keywords

Crossrefs

Cf. also A351942.

Programs

  • Maple
    a:= n-> (m-> m*add(i[2]*numtheory[pi](i[1])/i[1], i=ifactors(m)[2]))
            (mul(ithprime(i[2]), i=ifactors(n)[2])):
    seq(a(n), n=1..120);  # Alois P. Heinz, Apr 28 2022
  • Mathematica
    a[n_] := If[n == 1, 0, #*Sum[i[[2]]*PrimePi[i[[1]]]/i[[1]], {i, FactorInteger[#]}]]&[Product[Prime[i[[2]]], {i, FactorInteger[n]}]];
    Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Jan 29 2025, after Alois P. Heinz *)
  • PARI
    A181819(n) = factorback(apply(e->prime(e),(factor(n)[,2])));
    A258851(n) = (n*sum(i=1, #n=factor(n)~, n[2, i]*primepi(n[1, i])/n[1, i])); \\ From A258851
    A353379(n) = A258851(A181819(n));

Formula

a(n) = A258851(A181819(n)).