A353379 Primepi-based variant of the arithmetic derivative applied to the prime shadow of n.
0, 1, 1, 2, 1, 4, 1, 3, 2, 4, 1, 7, 1, 4, 4, 4, 1, 7, 1, 7, 4, 4, 1, 11, 2, 4, 3, 7, 1, 12, 1, 5, 4, 4, 4, 12, 1, 4, 4, 11, 1, 12, 1, 7, 7, 4, 1, 15, 2, 7, 4, 7, 1, 11, 4, 11, 4, 4, 1, 20, 1, 4, 7, 6, 4, 12, 1, 7, 4, 12, 1, 19, 1, 4, 7, 7, 4, 12, 1, 15, 4, 4, 1, 20, 4, 4, 4, 11, 1, 20, 4, 7, 4, 4, 4, 21, 1, 7, 7
Offset: 1
Keywords
Links
Programs
-
Maple
a:= n-> (m-> m*add(i[2]*numtheory[pi](i[1])/i[1], i=ifactors(m)[2])) (mul(ithprime(i[2]), i=ifactors(n)[2])): seq(a(n), n=1..120); # Alois P. Heinz, Apr 28 2022
-
Mathematica
a[n_] := If[n == 1, 0, #*Sum[i[[2]]*PrimePi[i[[1]]]/i[[1]], {i, FactorInteger[#]}]]&[Product[Prime[i[[2]]], {i, FactorInteger[n]}]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Jan 29 2025, after Alois P. Heinz *)
-
PARI
A181819(n) = factorback(apply(e->prime(e),(factor(n)[,2]))); A258851(n) = (n*sum(i=1, #n=factor(n)~, n[2, i]*primepi(n[1, i])/n[1, i])); \\ From A258851 A353379(n) = A258851(A181819(n));