cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353410 a(n) = (tan(1*Pi/9))^(2*n) + (tan(2*Pi/9))^(2*n) + (tan(3*Pi/9))^(2*n) + (tan(4*Pi/9))^(2*n).

Original entry on oeis.org

4, 36, 1044, 33300, 1070244, 34420356, 1107069876, 35607151476, 1145248326468, 36835122753252, 1184744167077204, 38105444942929620, 1225602095970073572, 39419576386043222340, 1267869080483029127412, 40779027899804602385460, 1311593714249667915837060, 42185362424185765127267748
Offset: 0

Views

Author

Bernard Schott, Apr 17 2022

Keywords

Comments

Sum_{k=1..(m-1)/2} (tan(k*Pi/m))^(2*n) is an integer when m >= 3 is an odd integer (see AMM link); this sequence is for the case m = 9.
Note tan(3*Pi/9) = tan(Pi/3) = sqrt(3).

Examples

			a(1) = tan^2 (Pi/9) + tan^2 (2*Pi/9) + tan^2 (3*Pi/9) + tan^2 (4*Pi/9) = 36.
		

Crossrefs

Similar with: A000244 (m=3), 2*A165225 (m=5), A108716 (m=7), this sequence (m=9), A275546 (m=11), A353411 (m=13).
Cf. A019676 (Pi/9), A019918 (tan(Pi/9)), A019938 (tan(2*Pi/9)).
Cf. A215948.

Programs

  • Mathematica
    LinearRecurrence[{36, -126, 84, -9}, {4, 36, 1044, 33300}, 18] (* Amiram Eldar, Apr 18 2022 *)

Formula

G.f.: 4*(1 - 27x + 63*x^2 - 21*x^3)/((1 - 3*x)*(1 - 33*x + 27*x^2 - 3*x^3)). - Stefano Spezia, Apr 18 2022
a(n) = A215948(n) + 3^n. - Jianing Song, Apr 19 2022

Extensions

More terms from Stefano Spezia, Apr 18 2022