cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A108716 a(n) = tan(Pi/14)^(-2n) + tan(3*Pi/14)^(-2n) + tan(5*Pi/14)^(-2n).

Original entry on oeis.org

3, 21, 371, 7077, 135779, 2606261, 50028755, 960335173, 18434276035, 353858266965, 6792546291251, 130387472704741, 2502874814474531, 48044357383337973, 922243598852422035, 17703083191185355397
Offset: 0

Views

Author

Philippe Deléham, Jun 20 2005

Keywords

Comments

The Berndt-type sequence number 11 for the argument 2*Pi/7 defined by the relation a(n) = t(1)^(2*n) + t(2)^(2*n) + t(4)^(2*n) = (-sqrt(7) + 4*s(1))^(2*n) + (-sqrt(7) + 4*s(2))^(2*n) + (-sqrt(7) + 4*s(4))^(2*n), where t(j) = tan(2*Pi*j/7) and s(j) = sin(2*Pi*j/7) (the respective sum with odd powers are discussed in A215794). See also A215007, A215008, A215143, A215493, A215494, A215510, A215512, A215694, A215695, A215828 and especially A215575, where a(n) = B(2n) for the function B(n) defined in the comments. - Roman Witula, Aug 23 2012
The sequence a(n+1)/a(n) is increasing and convergent to (t(2))^2 = 19,195669... (we note that the sequence A215794(n+1)/A215794(n) is decreasing and converges to the same limit). - Roman Witula, Aug 24 2012
Let L(p) be the total length of all sides and diagonals of a regular p-sided polygon inscribed in a unit circle. Then (L(p)/p)^2 = cot(Pi/(2p))^2 is the largest root of the equation: C(p,k)-C(p,2+k)*x+C(p,4+k)*x^2-C(p,6+k)*x^3+ ... +(-1)^q*x^q = 0, where k=1 if p is odd, k=0 if p is even, q = floor(p/2), and where C denotes the binomial coefficient. The complete set of roots is: x(i) = cot((2*i-1)*Pi/(2p))^2, i=1,2,...,q. Then a(n) = x(1)^n+x(2)^n+...x(q)^n for p=7. - Seppo Mustonen, Mar 25 2014
Sum_{k=1..(m-1)/2} tan^(2n) (k*Pi/m) is an integer when m >= 3 is an odd integer (see AMM link and formula); this sequence is the particular case m = 7. All terms are odd. - Bernard Schott, Apr 22 2022

Crossrefs

Similar to: A000244 (m=3), 2*A165225 (m=5), this sequence (m=7), A353410 (m=9), A275546 (m=11), A353411 (m=13).

Programs

  • Maple
    A:= gfun:-rectoproc({-a(n+3)+21*a(n+2)-35*a(n+1)+7*a(n), a(0) = 3, a(1) = 21, a(2) = 371},a(n), remember):
    seq(A(n),n=0..20); # Robert Israel, Aug 23 2015
  • Mathematica
    Table[ Round[ Cot[Pi/14]^(2n) + Cot[3Pi/14]^(2n) + Cot[5Pi/14]^(2n)], {n, 0, 12}] (* Robert G. Wilson v, Jun 21 2005 *)
    RecurrenceTable[{a[0]== 3, a[1]== 21, a[2]==371, a[n]== 21*a[n-1] - 35*a[n-2] + 7*a[n-3]}, a, {n,30}] (* G. C. Greubel, Aug 22 2015 *)
  • PARI
    a(n)=round(tan(Pi/14)^(-2*n) + tan(3*Pi/14)^(-2*n) + tan(5*Pi/14)^(-2*n)); \\ Anders Hellström, Aug 22 2015

Formula

a(n) = 7^n*A(2n), where A(n) := A(n-1) + A(n-2) + A(n-3)/7, with A(0)=3, A(1)=1, and A(2)=3. - see Witula-Slota's (Section 6) and Witula's (Remark 11) papers for the proofs and details. In these papers A(n) denotes the value of the big omega function with index n for the argument 2*i/sqrt(7) (see also A215512). - Roman Witula, Aug 23 2012
Conjecture: a(n) = 21*a(n-1)-35*a(n-2)+7*a(n-3). G.f.: -(35*x^2-42*x+3) / (7*x^3-35*x^2+21*x-1). - Colin Barker, Jun 01 2013
To verify conjecture, note that the roots of 7*x^3-35*x^2+21*x-1 are tan(Pi/14)^2, tan(3*Pi/14)^2 and tan(5*Pi/14)^2. - Robert Israel, Aug 23 2015
E.g.f.: exp((tan(Pi/7))^2*x) + exp((cot(Pi/14))^2*x) + exp((cot(3*Pi/14))^2*x). - G. C. Greubel, Aug 22 2015
a(n) = A275195(2*n)/(7^n). - Kai Wang, Aug 02 2016
a(n) = (tan(1*Pi/7))^(2*n) + (tan(2*Pi/7))^(2*n) + (tan(3*Pi/7))^(2*n). - Bernard Schott, Apr 22 2022

Extensions

More terms from Robert G. Wilson v, Jun 21 2005

A165225 a(0)=1, a(1)=5, a(n) = 10*a(n-1) - 5*a(n-2) for n > 1.

Original entry on oeis.org

1, 5, 45, 425, 4025, 38125, 361125, 3420625, 32400625, 306903125, 2907028125, 27535765625, 260822515625, 2470546328125, 23401350703125, 221660775390625, 2099601000390625, 19887706126953125, 188379056267578125
Offset: 0

Views

Author

Philippe Deléham, Sep 09 2009

Keywords

Comments

Sum_{k=1..(m-1)/2} tan^(2n) (k*Pi/m) is an integer when m >= 3 is an odd integer (see AMM and Crux Mathematicorum links); twice this sequence is the particular case m = 5. - Bernard Schott, Apr 25 2022

Crossrefs

Similar with: A000244 (m=3), 2*this sequence (m=5), A108716 (m=7), A353410 (m=9), A275546 (m=11), A353411 (m=13).

Programs

  • Mathematica
    LinearRecurrence[{10,-5},{1,5},30] (* Harvey P. Dale, Dec 23 2019 *)

Formula

Limit_{n->oo} a(n+1)/a(n) = 5 + 2*sqrt(5) = 9.47213595...
G.f.: (1-5x)/(1-10x+5x^2).
a(n) = ((5 - 2*sqrt(5))^n + (5 + 2*sqrt(5))^n)/2. - Klaus Brockhaus, Sep 25 2009
a(n) = (tan(Pi/5)^(2*n) + tan(2*Pi/5)^(2*n))/2 (Smeenk, 2009). - Amiram Eldar, Apr 03 2022

Extensions

More terms from Klaus Brockhaus, Sep 25 2009

A275546 a(n) = (tan(1*Pi/11))^(2*n) + (tan(2*Pi/11))^(2*n) + (tan(3*Pi/11))^(2*n) + (tan(4*Pi/11))^(2*n) + (tan(5*Pi/11))^(2*n).

Original entry on oeis.org

5, 55, 2365, 113311, 5476405, 264893255, 12813875437, 619859803695, 29985188632421, 1450508002869079, 70167091762786205, 3394273427239643839, 164195092176119969173, 7942798031108524622951, 384226104001681151724877, 18586611219134532494467151, 899111520569015285343455941, 43493755633501102693569684087, 2103973462501643822799172235773
Offset: 0

Views

Author

Kai Wang, Aug 01 2016

Keywords

Comments

(tan(1*Pi/11))^(2*n), (tan(2*Pi/11))^(2*n), (tan(3*Pi/11))^(2*n),(tan(4*Pi/11))^(2*n), (tan(5*Pi/11))^(2*n) are roots of the polynomial x^5 - 55x^4 + 330x^3 - 462x^2 + 165x - 11.
Sum_{k=1..((m-1)/2)} (tan(k*Pi/m))^(2*n) is an integer when m >= 3 is an odd integer (see AMM link); this sequence is the particular case m = 11. All terms are odd. - Bernard Schott, Apr 24 2022

Crossrefs

Similar to: A000244 (m=3), 2*A165225 (m=5), A108716 (m=7), A353410 (m=9), this sequence (m=11), A353411 (m=13).

Programs

  • PARI
    a(n)=([0,1,0,0,0;0,0,1,0,0;0,0,0,1,0;0,0,0,0,1;11,-165,462,-330,55]^n*[5;55;2365;113311;5476405])[1,1] \\ Charles R Greathouse IV, Aug 01 2016
    
  • PARI
    Vec((5-220*x+990*x^2-924*x^3+165*x^4)/(1-55*x+330*x^2-462*x^3+165*x^4-11*x^5) + O(x^20)) \\ Colin Barker, Aug 02 2016

Formula

a(-2) = 141, a(-1) = 15, a(0) = 5, a(1) = 55, a(2) = 2365.
a(n) = +55*a(n-1)-330*a(n-2)+462*a(n-3)-165*a(n-4)-11*a(n-5) for n > 2.
a(n) ~ k^n where k = 48.37415... is the largest real root of x^5 - 55x^4 + 330x^3 - 462x^2 + 165x - 11. - Charles R Greathouse IV, Aug 01 2016
G.f.: (5-220*x+990*x^2-924*x^3+165*x^4) / (1-55*x+330*x^2-462*x^3+165*x^4-11*x^5). - Colin Barker, Aug 02 2016

A353411 a(n) = (tan(1*Pi/13))^(2*n) + (tan(2*Pi/13))^(2*n) + (tan(3*Pi/13))^(2*n) + (tan(4*Pi/13))^(2*n) + (tan(5*Pi/13))^(2*n) + (tan(6*Pi/13))^(2*n).

Original entry on oeis.org

6, 78, 4654, 312390, 21167510, 1435594238, 97371674686, 6604463476598, 447963730184230, 30384227802426030, 2060884053792801614, 139784466963241906598, 9481221017869954060214, 643086846082033986242142, 43618927438218948551328606, 2958559706907951258983758550
Offset: 0

Views

Author

Bernard Schott, Apr 19 2022

Keywords

Comments

Sum_{k=1..(m-1)/2} (tan(k*Pi/m))^(2*n) is an integer when m >= 3 is an odd integer (see AMM link); this sequence is the particular case m = 13.
All terms are even.

Examples

			a(1) = tan^2 (Pi/13) + tan^2 (2*Pi/13) + tan^2 (3*Pi/13) + tan^2 (4*Pi/13) + tan^2 (5*Pi/13) + tan^2 (6*Pi/13) = 78.
		

Crossrefs

Similar to: A000244 (m=3), 2*A165225 (m=5), A108716 (m=7), A353410 (m=9), A275546 (m=11), this sequence (m=13).

Programs

  • Mathematica
    LinearRecurrence[{78, -715, 1716, -1287, 286, -13}, {6, 78, 4654, 312390, 21167510, 1435594238}, 16] (* Amiram Eldar, Apr 19 2022 *)

Formula

G.f.: -2*(143*x^5 -1287*x^4 +2574*x^3 -1430*x^2 +195*x -3) / (13*x^6 -286*x^5 +1287*x^4 -1716*x^3 +715*x^2 -78*x +1). - Alois P. Heinz, Apr 19 2022
Showing 1-4 of 4 results.