cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A033304 Expansion of (2 + 2*x - 3*x^2) / (1 - 2*x - x^2 + x^3).

Original entry on oeis.org

2, 6, 11, 26, 57, 129, 289, 650, 1460, 3281, 7372, 16565, 37221, 83635, 187926, 422266, 948823, 2131986, 4790529, 10764221, 24186985, 54347662, 122118088, 274396853, 616564132, 1385407029, 3112981337, 6994805571, 15717185450
Offset: 0

Views

Author

Keywords

Comments

From L. Edson Jeffery, Mar 22 2011: (Start)
Let A be the unit-primitive matrix (see [Jeffery])
A=A_(7,2)=
(0 0 1)
(0 1 1)
(1 1 1).
Let B={b(n)} be this sequence shifted to the right one place and setting b(0)=3. Then B=(3,2,6,11,26,...) with generating function (3-4*x-x^2)/(1-2*x-x^2+x^3) and b(n)=Trace(A^n). (End)
The following identity hold true (a(n)^2 - a(2n+2))/2 = A094648(n+1) = (-1)^(n+1)*A096975(n+1) - for the proof see Witula et al.'s papers - Roman Witula, Jul 25 2012
We note that the joined sequences (-1)^(n+1)*a(n) and A094648(n) form a two-sided sequence defined either by the recurrence formula x(n+3) + x(n+2) - 2x(n+1) - x(n) = 0, n in Z, x(0)=3, x(-1)=-2, x(1)=-1, or by the following trigonometric identities: x(n) = (c(1))^n + (c(2))^n + (c(4))^n = (c(1)c(2))^(-n) + (c(1)c(4))^(-n) + (c(2)c(4))^(-n) = (s(2)/s(1))^n + (s(4)/s(2))^n + (s(1)/s(4))^n, for n in Z, where c(j) := 2*cos(2Pi*j/7) and s(j) := sin(2*Pi*j/7) - for the proof see Witula's and Witula et al.'s papers. - Roman Witula, Jul 25 2012
We have 4*a(n+2) - a(n) = 7*A077998(n+2). - Roman Witula, Aug 13 2012
Two very intriguing identities of trigonometric nature hold: (-1)^n*(a(n)-a(n-1)) = c(1)*c(2)^(-n) + c(2)*c(4)^(-n) + c(4)*c(1)^(-n), and (-1)^(n+1)*(a(n-1)-a(n+1)) = c(1)*c(4)^(-n-1) + c(2)*c(1)^(-n-1) + c(4)*c(2)^(-n-1), where a(-1):=3 and c(j) is defined as above. For the proof see Remark 6 in the first Witula's paper. - Roman Witula, Aug 14 2012
With respect to the form of the trigonometric formulas describing a(n), we call this sequence the Berndt-type sequence number 20 for the argument 2Pi/7. The A-numbers of other Berndt-type sequences numbers are given in below. - Roman Witula, Sep 30 2012

References

  • R. P. Stanley, Enumerative Combinatorics I, p. 244, Eq. (36).

Crossrefs

Programs

  • Magma
    I:=[2,6,11]; [n le 3 select I[n] else 2*Self(n-1) +Self(n-2) - Self(n-3): n in [1..30]]; // G. C. Greubel, Apr 19 2018
  • Mathematica
    CoefficientList[Series[(2+2x-3x^2)/(1-2x-x^2+x^3),{x,0,50}], x]  (* Harvey P. Dale, Mar 14 2011 *)
    LinearRecurrence[{2, 1, -1}, {2, 6, 11}, 29] (* Jean-François Alcover, Sep 27 2017 *)
  • PARI
    {a(n)=if(n<0, n=-n; polsym(x^3-x^2-2*x+1,n-1)[n], n+=2; polsym(1-x-2*x^2+x^3,n-1)[n])} /* Michael Somos, Aug 03 2006 */
    
  • PARI
    x='x+O('x^99); Vec((2+2*x-3*x^2)/(1-2*x-x^2+x^3)) \\ Altug Alkan, Apr 19 2018
    

Formula

a(-1-n) = A096975(n).
a(n) = (1-2*cos(1/7*Pi))^(n+1)+(1+2*cos(2/7*Pi))^(n+1)+(1-2*cos(3/7*Pi))^(n+1). - Vladeta Jovovic, Jun 27 2001
a(n) = trace of (n+1)-th power of the 3 X 3 matrix (in the example of A066170): [1 1 1 / 1 1 0 / 1 0 0]. Alternatively, the sum of the (n+1)st powers of the roots of the corresponding characteristic polynomial: x^3 - 2*x^2 - x + 1 = 0. a(n) = A006356(n) + A006356(n-1) + 2*A006356(n-2). E.g., a(3) = 26 = the trace of M^4. The characteristic polynomial of this matrix (see A066170) is x^3 - 2*x^2 - x + 1 and the roots are 2.24697960372..., -0.8019377358... and 0.55495813208... = a, b, c. Then Sum(a^4 + b^4 + c^4) = 26. - Gary W. Adamson, Feb 01 2004
(-1)^(n+1)*a(n) = (c(1))^(-n-1) + (c(2))^(-n-1) + (c(3))^(-n-1) = (c(1)c(2))^(n+1) + (c(1)c(4))^(n+1) + (c(2)c(4))^(n+1) = (s(1)/s(2))^(n+1) + (s(2)/s(4))^(n+1) + (s(4)/s(1))^(n+1), where c(j) := 2*cos(2*Pi*j/7) and s(j) := sin(2*Pi*j/7) - for the proof see Witula's and Witula et al.'s papers. - Roman Witula, Jul 25 2012
a(n) = 3*A077998(n+1) - A006054(n+2) - A006054(n+1). - Roman Witula, Aug 13 2012
a(n)*(-1)^(n+1) = (A094648(n+1)^2 - A094648(2*(n+1)))/2. - Roman Witula, Sep 30 2012

A094648 An accelerator sequence for Catalan's constant.

Original entry on oeis.org

3, -1, 5, -4, 13, -16, 38, -57, 117, -193, 370, -639, 1186, -2094, 3827, -6829, 12389, -22220, 40169, -72220, 130338, -234609, 423065, -761945, 1373466, -2474291, 4459278, -8034394, 14478659, -26088169, 47011093, -84708772, 152642789, -275049240
Offset: 0

Views

Author

Paul Barry, May 18 2004

Keywords

Comments

The pair A094648 and the alternating sequence A033304 when joined form a two-sided sequence defined by the recurrence formula x(n+3) + x(n+2) - 2x(n+1) - x(n) = 0, n in Z, x(-1)=-2, x(0)=3, x(1)=-1 - for details see Witula's comments to A033304. - Roman Witula, Jul 25 2012
From Roman Witula, Aug 09 2012: (Start)
There exist two interesting subsequences b(n) and c(n) of the given above sequence x(n) defined by the following relations: b(n)=a(2^n) and c(n)=x(-2^n). These subsequences satisfy the following system of recurrence equations:
b(n+1)=b(n)^2-2*c(n), and c(n+1)=c(n)^2-2*b(n),
which easily follow from the general identity: x(n)^2=x(2*n)-2*x(-n), n in Z. We note that b(0)=-1, b(1)=5, b(2)=13, b(3)=117, c(0)=-2, c(1)=6, c(2)=26, c(3)=650. From the above system we deduce that all b(n) are odd, whereas all c(n) are even. Moreover we obtain c(n+1)-b(n+1)=(c(n)-b(n))*(b(n)+c(n)+2), which yields b(n+1)-c(n+1)=product{k=1,..,n}(b(k)+c(k)+2)=13*product{k=2,..,n}(b(k)+c(k)+2)=13^2*41*product{k=3,..,n}(b(k)+c(k)+2). It follows that b(n)-c(n) is divisible by 13^2*41 for every n=3,4,..., and after using the above system again each b(n) and c(n), for n=2,3,..., is divisible by 13. (End)
If we set W(n):=3*A077998(n)-A006054(n+1)-A006054(n), n=0,1,..., then a(n)=(W(n)^2-W(2*n))/2 and W(n) = (-c(1))^(-n) + (-c(2))^(-n) + (-c(4))^(-n) = (-c(1)*c(2))^n + (-c(1)*c(4))^n + (-c(2)*c(4))^n = (-1-c(1))^n + (-1-c(2))^n + (-1-c(4))^n, where c(j):=2*cos(2*Pi*j/7) - for the proof see Witula-Slota-Warzynski's paper. Moreover it follows from the comment at the top and from comments to A033304 that W(n+1)=A033304(n)=(-1)^(n+1)*x(-n-1). - Roman Witula, Aug 11 2012
The following trigonometric type identitities hold true: (1) -a(n-1)-a(n) = c(1)*c(2)^n + c(2)*c(4)^n + c(4)*c(1)^n and (2) a(n)-a(n+2) = c(4)*c(2)^(n+1) + c(1)*c(4)^(n+1) + c(2)*c(1)^(n+1), where a(-1)=-2 and c(j) is defined as above (see also the respective comment to A033304). For the proof see Remark 6 in Witula's paper. - Roman Witula, Aug 14 2012
It can be proved that A033304(n-1)*(-1)^n = (a(n)^2 - a(2*n))/2, n=1,2,... - Roman Witula, Sep 30 2012
With respect to the form of the trigonometric formulas describing a(n), we call this sequence the Berndt-type sequence number 19 for the argument 2*Pi/7. The A-numbers of other Berndt-type sequences numbers are given in below. - Roman Witula, Sep 30 2012

Examples

			We have a(17) = a(19) + 50000, a(4) + a(5) = -3, 2*a(7) + a(8) = 3, and 2*a(9) + a(10) = a(5). - _Roman Witula_, Sep 14 2012
		

Crossrefs

Programs

  • Magma
    I:=[3,-1,5]; [n le 3 select I[n]  else -Self(n-1)+2*Self(n-2)+Self(n-3): n in [1..40]]; // Vincenzo Librandi, Jul 25 2015
    
  • Mathematica
    CoefficientList[ Series[(3 + 2x - 2x^2)/(1 + x - 2x^2 - x^3), {x, 0, 33}], x] (* Robert G. Wilson v, May 24 2004 *)
    a[n_] := Round[(2Sin[3Pi/14])^n + (-2Sin[Pi/14])^n + (-2Cos[Pi/7])^n]; Table[ a[n], {n, 0, 33}] (* Robert G. Wilson v, May 24 2004 *)
    LinearRecurrence[{-1,2,1}, {3,-1,5}, 50] (* Roman Witula, Aug 09 2012 *)
  • PARI
    x='x+O('x^30); Vec((3+2*x-2*x^2)/(1+x-2*x^2-x^3)) \\ G. C. Greubel, May 09 2018

Formula

G.f.: (3+2*x-2*x^2)/(1+x-2*x^2-x^3);
a(n) = (2*sin(3*Pi/14))^n+(-2*sin(Pi/14))^n+(-2*cos(Pi/7))^n.
a(p) == -1 mod(p), p prime. - Philippe Deléham, Oct 03 2009
a(n) = (2*cos(2*Pi/7))^n + (2*cos(4*Pi/7))^n + (2*cos(8*Pi/7))^n, which is equivalent to the formula given above (for analogous sums with sines see A215493 and A215494). Moreover we have a(n+3) + a(n+2) - 2a(n+1) - a(n) = 0 - for the proof see Witula-Slota's paper. - Roman Witula, Jul 24 2012
a(n) = 3*(-1)^n*A006053(n+2) +2*A078038(n-1). - R. J. Mathar, Nov 03 2020

A215794 a(n) = -7^n*A(2*n+1), where A(n) = A(n-1) + A(n-2) + A(n-3)/7, with A(0)=3, A(1)=1, A(2)=3.

Original entry on oeis.org

-1, -31, -609, -11711, -224833, -4315871, -82846113, -1590286719, -30526618241, -585978870687, -11248256653025, -215917815567167, -4144686996149441, -79560041170858591, -1527208244431770145, -29315784501060168447, -562736106255347592449
Offset: 0

Views

Author

Roman Witula, Aug 23 2012

Keywords

Comments

The Berndt-type sequence number 12 for the argument 2Pi/7 defined by the relation sqrt(7)*a(n) = t(1)^(2*n+1) + t(2)^(2*n+1) + t(4)^(2*n+1) = (-sqrt(7) + 4*s(1))^(2*n+1) + (-sqrt(7) + 4*s(2))^(2*n+1) + (-sqrt(7) + 4*s(4))^(2*n+1), where t(j) := tan(2*Pi*j/7) and s(j) := sin(2*Pi*j/7) (the respective sum with even powers in A108716 are given, see also A215828). We note that sqrt(7)*a(n) = B(2*n+1), where B(n) is defined in the comments to A215575. From Witula-Slota's (Section 6) and Witula's (Remark 11) papers it follows that B(n) is equal to the product (-sqrt(7))^n by the value of big omega function with index n for the argument 2*i/sqrt(7). The last value is equal to A(n). The respective recurrence relation for A(n) from the following decomposition follow (see Witula-Slota's paper for details): (X-1-2*i*d*s(1))*(X-1-2*i*d*s(2))*(X-1- 2*i*d*s(4)) = X^3 - (3+i*sqrt(7))*X^2 + (3+i*2*sqrt(7)*d)*X - (1+i*sqrt(7)*d + i*sqrt(7)*d^3), since the big omega function with index n for the argument d is equal to the sum: (1 + 2*i*d*s(1))^n + (1 + 2*i*d*s(2))^n + (1 + 2*i*d*s(4))^n and it is equal to 3 for n=0, 3 + i*sqrt(7)*d for n=1, and lastly 3 + 2*i*sqrt(7)*d - 7*d^2 for n=2.
The sequence a(n+1)/a(n) is decreasing and convergent to (t(2))^2 = 19.195669... Moreover we have floor(a(n+1)/a(n)) = 19 for every n=1,2,...

Examples

			We have -31*sqrt(7) = t(1)^3 + t(2)^3 + t(4)^3.
		

Crossrefs

Programs

  • Magma
    m:=17; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(-(1+10*x-7*x^2)/(1-21*x+35*x^2-7*x^3)));  // Bruno Berselli, Aug 30 2012
    
  • Magma
    I:=[-1, -31, -609]; [n le 3 select I[n] else 21*Self(n-1)-35*Self(n-2)+7*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Mar 19 2013
  • Mathematica
      LinearRecurrence[{21, -35, 7}, {-1, -31, -609}, 17] (* Bruno Berselli, Aug 30 2012 *)

Formula

G.f.: -(1+10*x-7*x^2)/(1-21*x+35*x^2-7*x^3). [Bruno Berselli, Aug 30 2012]
a(n) = -A275195(2*n-1)/(7^n). - Kai Wang, Aug 02 2016

A094429 Given the 3 X 3 matrix M = [0 1 0 / 0 0 1 / 7 -14 7], a(n) = (-) rightmost term of M^n * [1 1 1].

Original entry on oeis.org

0, 7, 42, 196, 833, 3381, 13377, 52136, 201341, 773122, 2958032, 11291903, 43042727, 163918671, 623875840, 2373568575, 9028148962, 34334213564, 130560389505, 496440779373, 1887579497489, 7176808297736, 27286630574917
Offset: 1

Views

Author

Gary W. Adamson, May 02 2004

Keywords

Comments

M is derived from the Lucas polynomial: x^3 - 7*x^2 + 14*x - 7 with a root (and eigenvalue of the matrix): 3.801377358... = (2*sin(3*Pi/7))^2, the convergent of the sequence.
From Roman Witula, Sep 29 2012: (Start)
The Berndt-type sequence number 16 for the argument 2*Pi/7 (see Formula section and Crossrefs for other Berndt-type sequences for the argument 2*Pi/7 - for numbers from 1 to 18 without 16).
Note that all numbers of the form a(n)*7^(-1 - floor((n-1)/3)) are integers and even a(10) and a(11) are divisible by 7^5. (End)

Examples

			a(5) = 833. M^5 * [1 1 1] = [ -42 -196 -833].
We have 4*a(4) - a(5) = 4*a(5) - a(6) = 7*a(2) = 49, 88*a(10) = 23*a(11), and a(3) = 6*a(2), which implies the equalities c(4)*(s(1))^6 + c(2)*(s(4))^6 + c(1)*(s(2))^6 = 6*(c(4)*(s(1))^4 + c(2)*(s(4))^4 + c(1)*(s(2))^4) and
s(2)*(s(1))^8 + s(4)*(s(2))^8 + s(1)*(s(4))^8 = 6*( s(2)*(s(1))^6 + s(4)*(s(2))^6 + s(1)*(s(4))^6). - _Roman Witula_, Sep 29 2012
		

Crossrefs

Programs

  • Magma
    I:=[0,7,42]; [n le 3 select I[n] else 7*Self(n-1) -14*Self(n-2) +7*Self(n-3): n in [1..30]]; // G. C. Greubel, May 09 2018
  • Mathematica
    Table[(MatrixPower[{{0, 1, 0}, {0, 0, 1}, {7, -14, 7}}, n].{-1, -1, -1})[[3]], {n, 23}] (* Robert G. Wilson v, May 08 2004 *)
    LinearRecurrence[{7,-14,7}, {0,7,42}, 50] (* Roman Witula, Aug 13 2012 *)
  • PARI
    x='x+O('x^30); concat([0], Vec(7*x^2*(1-x)/(1-7*x+14*x^2-7*x^3))) \\ G. C. Greubel, May 09 2018
    
  • PARI
    a(n) = -(([0, 1, 0; 0, 0, 1; 7, -14, 7]^n)*[1,1,1]~)[3]; \\ Michel Marcus, May 10 2018
    

Formula

From Colin Barker, Jun 19 2012: (Start)
a(n) = 7*a(n-1) - 14*a(n-2) + 7*a(n-3).
G.f.: 7*x^2*(1-x)/(1 - 7*x + 14*x^2 - 7*x^3). (End)
a(n) = c(4)*(s(1))^(2*n) + c(2)*(s(4))^(2*n) + c(1)*(s(2))^(2*n) = (-1/sqrt(7))*(c(1)*(s(1))^(2*n+3) + c(2)*(s(2))^(2*n+3) + c(3)*(s(3))^(2*n+3)) = (-1/sqrt(7))*(s(2)*(s(1))^(2*n+2) + s(4)*(s(2))^(2*n+2) + s(1)*(s(4))^(2*n+2)), where c(j) := 2*cos(2*Pi*j/7) and s(j) := 2*sin(2*Pi*j/7) (for the sums of the respective odd powers see A217274, see also A215493 and comments to A215494). For the proof of these formulas see Witula-Slota's paper. - Roman Witula, Jul 24 2012

Extensions

More terms from Robert G. Wilson v, May 08 2004

A215828 a(n) = 7^(floor(n/3))*A(n), where A(n) = A(n-1) + A(n-2) + A(n-3)/7, with A(0)=3, A(1)=1, A(2)=3.

Original entry on oeis.org

3, 1, 3, 31, 53, 87, 1011, 1673, 2771, 32119, 53189, 88079, 1020995, 1690737, 2799811, 32454831, 53744245, 88998887, 1031656755, 1708393209, 2829048851, 32793751175, 54305486341, 89928286367, 1042430160131, 1726233651041, 2858592097539, 33136210400191
Offset: 0

Views

Author

Roman Witula, Aug 24 2012

Keywords

Comments

The Berndt-type sequence number 13 for the argument 2Pi/7
defined by the relation ((-sqrt(7))^n)*A(n) = t(1)^n + t(2)^n + t(4)^n = (-sqrt(7) + 4*s(1))^n + (-sqrt(7) + 4*s(2))^n + (-sqrt(7) + 4*s(4))^n, where t(j) := tan(2*Pi*j/7) and s(j) := sin(2*Pi*j/7), and the fact that all numbers 7^(floor(n/3))*A(n) are integers. We note that ((-sqrt(7))^n)*A(n) = B(n), where B(n) is defined in the comments to A215575. For more details see also A108716, A215794, Witula-Slota's (Section 6) and Witula's (Remark 11) papers.

Examples

			We have A(3)=31/7, A(4)=53/7 and A(5)=87/7. On the other hand we have a(2)+a(3)+a(4)=a(5).
		

Crossrefs

Programs

  • Magma
    /* By definition: */ i:=28; I:=[3,1,3]; A:=[m le 3 select I[m] else Self(m-1)+Self(m-2)+Self(m-3)/7: m in [1..i]]; [7^(Floor((n-1)/3))*A[n]: n in [1..i]]; // Bruno Berselli, Oct 28 2012
  • Mathematica
    CoefficientList[Series[(x^8 - 5 x^7 + 25 x^6 + 6 x^5 - 22 x^4 + 62 x^3 - 3 x^2 - x - 3)/(x^9 + 25 x^6 + 31 x^3 - 1), {x, 0, 30}], x] (* Vincenzo Librandi, Mar 19 2013 *)

Formula

G.f.: (x^8-5*x^7+25*x^6+6*x^5-22*x^4+62*x^3-3*x^2-x-3)/(x^9+25*x^6+31*x^3-1). [Colin Barker, Oct 28 2012]

A094430 a(n) is the rightmost term of M^n * [1 0 0], where M is the 3 X 3 matrix [0 1 0 / 0 0 1 / 7 -14 7].

Original entry on oeis.org

7, 49, 245, 1078, 4459, 17836, 69972, 271313, 1044435, 4002467, 15294370, 58337097, 222255768, 846131608, 3219700183, 12247849145, 46582062709, 177142452214, 673583231587, 2561162729076, 9737971026812, 37024601601729
Offset: 1

Views

Author

Gary W. Adamson, May 02 2004

Keywords

Comments

In A094429 the multiplier is [1 1 1] instead of [1 0 0]. The matrix M is derived from the 3rd-order Lucas polynomial x^3 - 7x^2 + 14x - 7, with a convergent of the series = 3.801937735... = (2 sin 3*Pi/7)^2; (an eigenvalue of the matrix and a root of the polynomial).
From Roman Witula, Sep 29 2012: (Start)
This sequence is the Berndt-type sequence number 17 for the argument 2*Pi/7 (see Formula section and Crossrefs for other Berndt-type sequences for the argument 2*Pi/7 - for numbers from 1 to 18 without 17).
Note that all numbers of the form a(n)*7^(-floor((n+4)/3)) are integers. (End)

Examples

			a(4) = 1078 since M^4 * [1 0 0] = [49 245 1078] = [a(2), a(3), a(4)].
We have a(2)=7*a(1), a(3)=5*a(2), 22*a(3)=5*a(4), and a(6)=4*a(5), which implies s(2)*s(1)^15 + s(4)*s(2)^15 + s(1)*s(4)^15 = 4*(s(2)*s(1)^13 + s(4)*s(2)^13 + s(1)*s(4)^13). - _Roman Witula_, Sep 29 2012
		

Crossrefs

Programs

  • Magma
    I:=[49,245,1078]; [7] cat [n le 3 select I[n] else 7*Self(n-1) -14*Self(n-2) + 7*Self(n-3): n in [1..30]]; // G. C. Greubel, May 09 2018
  • Mathematica
    Table[(MatrixPower[{{0, 1, 0}, {0, 0, 1}, {7, -14, 7}}, n].{1, 0, 0})[[3]], {n, 22}] (* Robert G. Wilson v, May 08 2004 *)
    Join[{7}, LinearRecurrence[{7,-14,7}, {49,245,1078}, 50]] (* Roman Witula, Aug 13 2012 *)(* corrected by G. C. Greubel, May 09 2018 *)
  • PARI
    x='x+O('x^30); Vec(7*x/(1-7*x+14*x^2-7*x^3)) \\ G. C. Greubel, May 09 2018
    
  • PARI
    a(n) = (([0, 1, 0; 0, 0, 1; 7, -14, 7]^n)*[1,0,0]~)[3]; \\ Michel Marcus, May 10 2018
    

Formula

From Colin Barker, Jun 19 2012: (Start)
a(n) = 7*a(n-1)-14*a(n-2)+7*a(n-3).
G.f.: 7*x/(1-7*x+14*x^2-7*x^3). (End)
-a(n) = s(2)*s(1)^(2*n+3) + s(4)*s(2)^(2*n+3) + s(1)*s(4)^(2*n+3), where s(j) := 2*sin(2*Pi*j/7); for the proof see A215494 and the Witula-Slota paper. This formula and the respective recurrence also give a(0)=a(-1)=0. - Roman Witula, Aug 13 2012

Extensions

More terms from Robert G. Wilson v, May 08 2004
Name edited by Michel Marcus, May 10 2018

A217274 a(n) = 7*a(n-1) - 14*a(n-2) + 7*a(n-3) with a(0)=0, a(1)=1, a(2)=7.

Original entry on oeis.org

0, 1, 7, 35, 154, 637, 2548, 9996, 38759, 149205, 571781, 2184910, 8333871, 31750824, 120875944, 459957169, 1749692735, 6654580387, 25306064602, 96226175941, 365880389868, 1391138718116, 5289228800247, 20109822277181, 76457523763621, 290689756066542
Offset: 0

Views

Author

Roman Witula, Sep 29 2012

Keywords

Comments

This is the Berndt-type sequence number 18 for the argument 2*Pi/7 defined by the relation
a(n)*sqrt(7) = c(4)*s(1)^(2n+1) + c(2)*s(4)^(2n+1) + c(1)*s(2)^(2n+1) = (1/s(4))*s(1)^(2n+2) + (1/s(2))*s(4)^(2n+2) + (1/s(1))*s(2)^(2n+2), where c(j) := 2*cos(2*Pi*j/7) and s(j) := 2*sin(2*Pi*j/7) (for the sums of the respective even powers see A094429). For the proof of this formula see the Witula/Slota and Witula references.
The definitions of the other Berndt-type sequences for the argument 2*Pi/7 (with numbers from 1 to 17) are in the cross references.
We note that all numbers of the form a(n)*7^(-floor((n+1)/3)) = A217444(n) are integers.
It can be proved that Sum_{k=2..n}a(k) = 7*(a(n-1) - a(n-2)).

Examples

			Writing c(j) as cj and s(k) as sk,
we have 7*sqrt(7) = c4*s1^5 + c2*s4^5 + c1*s2^5
and c4*s1^13 + c2*s4^13 + c1*s2^13 = 4(c4*s1^11 + c2*s4^11 + c1*s2^11).
We note that a(9) = 87*a(3)*a(2)^2 and a(11) = 2*a(3)*a(5)*a(2)^2.
		

Crossrefs

Programs

  • Magma
    I:=[0,1,7]; [n le 3 select I[n] else 7*Self(n-1)-14*Self(n-2)+7*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jul 26 2015
  • Mathematica
    LinearRecurrence[{7,-14,7}, {0,1,7}, 30]
    CoefficientList[Series[x/(1 - 7*x + 14*x^2 - 7*x^3), {x,0,50}], x] (* G. C. Greubel, Apr 16 2017 *)
  • Maxima
    a[0]:0$
    a[1]:1$
    a[2]:7$
    a[n]:=7*a[n-1] - 14*a[n-2] + 7*a[n-3];
    makelist(a[n], n, 0, 25); /* Martin Ettl, Oct 11 2012 */
    
  • PARI
    concat(0, Vec(x/(1-7*x+14*x^2-7*x^3) + O(x^40))) \\ Michel Marcus, Jul 25 2015
    

Formula

G.f.: x/(1-7*x+14*x^2-7*x^3).

A215829 a(n) = -3*a(n-1) + 9*a(n-2) + 3*a(n-3), with a(0)=3, a(1)=-3, a(2)=27.

Original entry on oeis.org

3, -3, 27, -99, 531, -2403, 11691, -55107, 263331, -1250883, 5957307, -28339875, 134882739, -641835171, 3054430539, -14535159939, 69169849155, -329162695299, 1566411248475, -7454188455651, 35472778517331, -168806797907427, 803312835011307
Offset: 0

Views

Author

Roman Witula, Aug 24 2012

Keywords

Comments

The Berndt-type sequence number 8 for the argument 2*Pi/9 defined by the trigonometric relations from the Formula section below.
From the general recurrence relation: b(n) = -3*b(n-1) + 9*b(n-2) + 3*b(n-3), i.e., b(n) - b(n-2) = 8*b(n-2) + 3(b(n-3) - b(n-1)) the following summation formulas can be easily deduced: b(2*n+1) + 3*b(2*n) - 3*b(0) - b(1) = 8*Sum_{k=1..n} b(2*k-1) and b(2*n+2) + 3*b(2*n+1) - b(2) - 3*b(1) = 8*Sum_{k=1..n} b(2*k). Hence it follows that (a(2*n+1) + 3*a(2*n))/2 are all integers congruent to 3 modulo 4, and (a(2*n+2) + 3*a(2*n+1))/2 are all integers congruent to 1 modulo 4.
We note that all numbers 3^(-1-floor(n/3))*a(n) = A215831(n) and 3^(-n-2)*a(3*n+2) are integers.
The following decomposition holds true: (X - k(1)^n)*(X - (-k(2))^n)*(X - k(3)^n) = X^3 - sqrt(3)^(-n)*a(n)*X^2 + sqrt(3)^(-n)*T(n) - sqrt(3)^(-n), where T(2*n+1) = sqrt(3)*A215945(n) and T(2*n) = A215948(n). [Roman Witula, Aug 30 2012]

Examples

			We have k(1)^3 - k(2)^3 + k(4)^3 = -11*sqrt(3).
		

References

  • D. Chmiela and R. Witula, Two parametric quasi-Fibonacci numbers of the nine order, (submitted, 2012).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{-3, 9, 3}, {3, -3, 27}, 50]

Formula

a(n) = (k(1)^n + (-k(2))^n + k(4)^n)*(sqrt(3))^n = (-1+4*c(1))^n + (-1+4*c(2))^n + (-1+4*c(4))^n, where k(j) := cot(2*Pi*j/9) and c(j) := cos(2*Pi*j/9).
G.f.: (3 + 6*x - 9*x^2)/(1 + 3*x - 9*x^2 - 3*x^3). [corrected by Georg Fischer, May 10 2019]

A275195 Sum of n-th powers of the roots of x^3 - 7*x^2 - 49*x - 49.

Original entry on oeis.org

3, 7, 147, 1519, 18179, 208887, 2427411, 28118111, 326005379, 3778768231, 43803428627, 507757907279, 5885832996995, 68227336438359, 790877309377939, 9167686467977919, 106269932920844035, 1231859155536345287, 14279457438806692755, 165524527406049126063, 1918726204965152746499
Offset: 0

Views

Author

Kai Wang, Jul 19 2016

Keywords

Comments

a(n) is x1^n + x2^n + x3^n, where x1, x2, x3 are the roots of the polynomial x^3 - 7*x^2 - 49*x -49.
x1 = -sqrt(7)*tan(Pi/7),
x2 = -sqrt(7)*tan(2*Pi/7),
x3 = -sqrt(7)*tan(4*Pi/7).
a(2n) = A108716(n)* (7^n),
a(2n+1) = -A215794(n)* 7^(n+1).

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(-49 x^2 - 14 x + 3)/(-49 x^3 - 49 x^2 - 7 x + 1), {x, 0, 20}], x] (* Michael De Vlieger, Jul 19 2016 *)
    LinearRecurrence[{7,49,49},{3,7,147},30] (* Harvey P. Dale, Jan 01 2023 *)
  • PARI
    terms(n) = my(a=3, b=7, c=147, d=0, i=0); while(i < n, if(i==0, print1(a, ", "); i++, if(i==1, print1(b, ", "); i++, if(i==2, print1(c, ", "); i++, while(i < n, d=7*c + 49*b + 49*a; print1(d, ", "); a=b; b=c; c=d; i++)))))
    /* Call function as follows to print initial 10 terms: */
    terms(10) \\ Felix Fröhlich, Jul 19 2016
    
  • PARI
    polsym(x^3 - 7*x^2 - 49*x - 49, 30) \\ Charles R Greathouse IV, Jul 20 2016
    
  • PARI
    Vec((1-7*x)*(3+7*x)/(1-7*x-49*x^2-49*x^3) + O(x^30)) \\ Colin Barker, Jul 23 2016

Formula

G.f.: (-49*x^2-14*x+3)/(-49*x^3-49*x^2-7*x+1).
a(n) = (-sqrt(7)*tan(Pi/7))^n + (-sqrt(7)*tan(2*Pi/7))^n + (-sqrt(7)*tan(4*Pi/7))^n.
a(0)=3, a(1)=7, a(2)=147; thereafter a(n) = 7*a(n-1) + 49*a(n-2) + 49*a(n-3).

A165225 a(0)=1, a(1)=5, a(n) = 10*a(n-1) - 5*a(n-2) for n > 1.

Original entry on oeis.org

1, 5, 45, 425, 4025, 38125, 361125, 3420625, 32400625, 306903125, 2907028125, 27535765625, 260822515625, 2470546328125, 23401350703125, 221660775390625, 2099601000390625, 19887706126953125, 188379056267578125
Offset: 0

Views

Author

Philippe Deléham, Sep 09 2009

Keywords

Comments

Sum_{k=1..(m-1)/2} tan^(2n) (k*Pi/m) is an integer when m >= 3 is an odd integer (see AMM and Crux Mathematicorum links); twice this sequence is the particular case m = 5. - Bernard Schott, Apr 25 2022

Crossrefs

Similar with: A000244 (m=3), 2*this sequence (m=5), A108716 (m=7), A353410 (m=9), A275546 (m=11), A353411 (m=13).

Programs

  • Mathematica
    LinearRecurrence[{10,-5},{1,5},30] (* Harvey P. Dale, Dec 23 2019 *)

Formula

Limit_{n->oo} a(n+1)/a(n) = 5 + 2*sqrt(5) = 9.47213595...
G.f.: (1-5x)/(1-10x+5x^2).
a(n) = ((5 - 2*sqrt(5))^n + (5 + 2*sqrt(5))^n)/2. - Klaus Brockhaus, Sep 25 2009
a(n) = (tan(Pi/5)^(2*n) + tan(2*Pi/5)^(2*n))/2 (Smeenk, 2009). - Amiram Eldar, Apr 03 2022

Extensions

More terms from Klaus Brockhaus, Sep 25 2009
Showing 1-10 of 19 results. Next