cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A108716 a(n) = tan(Pi/14)^(-2n) + tan(3*Pi/14)^(-2n) + tan(5*Pi/14)^(-2n).

Original entry on oeis.org

3, 21, 371, 7077, 135779, 2606261, 50028755, 960335173, 18434276035, 353858266965, 6792546291251, 130387472704741, 2502874814474531, 48044357383337973, 922243598852422035, 17703083191185355397
Offset: 0

Views

Author

Philippe Deléham, Jun 20 2005

Keywords

Comments

The Berndt-type sequence number 11 for the argument 2*Pi/7 defined by the relation a(n) = t(1)^(2*n) + t(2)^(2*n) + t(4)^(2*n) = (-sqrt(7) + 4*s(1))^(2*n) + (-sqrt(7) + 4*s(2))^(2*n) + (-sqrt(7) + 4*s(4))^(2*n), where t(j) = tan(2*Pi*j/7) and s(j) = sin(2*Pi*j/7) (the respective sum with odd powers are discussed in A215794). See also A215007, A215008, A215143, A215493, A215494, A215510, A215512, A215694, A215695, A215828 and especially A215575, where a(n) = B(2n) for the function B(n) defined in the comments. - Roman Witula, Aug 23 2012
The sequence a(n+1)/a(n) is increasing and convergent to (t(2))^2 = 19,195669... (we note that the sequence A215794(n+1)/A215794(n) is decreasing and converges to the same limit). - Roman Witula, Aug 24 2012
Let L(p) be the total length of all sides and diagonals of a regular p-sided polygon inscribed in a unit circle. Then (L(p)/p)^2 = cot(Pi/(2p))^2 is the largest root of the equation: C(p,k)-C(p,2+k)*x+C(p,4+k)*x^2-C(p,6+k)*x^3+ ... +(-1)^q*x^q = 0, where k=1 if p is odd, k=0 if p is even, q = floor(p/2), and where C denotes the binomial coefficient. The complete set of roots is: x(i) = cot((2*i-1)*Pi/(2p))^2, i=1,2,...,q. Then a(n) = x(1)^n+x(2)^n+...x(q)^n for p=7. - Seppo Mustonen, Mar 25 2014
Sum_{k=1..(m-1)/2} tan^(2n) (k*Pi/m) is an integer when m >= 3 is an odd integer (see AMM link and formula); this sequence is the particular case m = 7. All terms are odd. - Bernard Schott, Apr 22 2022

Crossrefs

Similar to: A000244 (m=3), 2*A165225 (m=5), this sequence (m=7), A353410 (m=9), A275546 (m=11), A353411 (m=13).

Programs

  • Maple
    A:= gfun:-rectoproc({-a(n+3)+21*a(n+2)-35*a(n+1)+7*a(n), a(0) = 3, a(1) = 21, a(2) = 371},a(n), remember):
    seq(A(n),n=0..20); # Robert Israel, Aug 23 2015
  • Mathematica
    Table[ Round[ Cot[Pi/14]^(2n) + Cot[3Pi/14]^(2n) + Cot[5Pi/14]^(2n)], {n, 0, 12}] (* Robert G. Wilson v, Jun 21 2005 *)
    RecurrenceTable[{a[0]== 3, a[1]== 21, a[2]==371, a[n]== 21*a[n-1] - 35*a[n-2] + 7*a[n-3]}, a, {n,30}] (* G. C. Greubel, Aug 22 2015 *)
  • PARI
    a(n)=round(tan(Pi/14)^(-2*n) + tan(3*Pi/14)^(-2*n) + tan(5*Pi/14)^(-2*n)); \\ Anders Hellström, Aug 22 2015

Formula

a(n) = 7^n*A(2n), where A(n) := A(n-1) + A(n-2) + A(n-3)/7, with A(0)=3, A(1)=1, and A(2)=3. - see Witula-Slota's (Section 6) and Witula's (Remark 11) papers for the proofs and details. In these papers A(n) denotes the value of the big omega function with index n for the argument 2*i/sqrt(7) (see also A215512). - Roman Witula, Aug 23 2012
Conjecture: a(n) = 21*a(n-1)-35*a(n-2)+7*a(n-3). G.f.: -(35*x^2-42*x+3) / (7*x^3-35*x^2+21*x-1). - Colin Barker, Jun 01 2013
To verify conjecture, note that the roots of 7*x^3-35*x^2+21*x-1 are tan(Pi/14)^2, tan(3*Pi/14)^2 and tan(5*Pi/14)^2. - Robert Israel, Aug 23 2015
E.g.f.: exp((tan(Pi/7))^2*x) + exp((cot(Pi/14))^2*x) + exp((cot(3*Pi/14))^2*x). - G. C. Greubel, Aug 22 2015
a(n) = A275195(2*n)/(7^n). - Kai Wang, Aug 02 2016
a(n) = (tan(1*Pi/7))^(2*n) + (tan(2*Pi/7))^(2*n) + (tan(3*Pi/7))^(2*n). - Bernard Schott, Apr 22 2022

Extensions

More terms from Robert G. Wilson v, Jun 21 2005

A215794 a(n) = -7^n*A(2*n+1), where A(n) = A(n-1) + A(n-2) + A(n-3)/7, with A(0)=3, A(1)=1, A(2)=3.

Original entry on oeis.org

-1, -31, -609, -11711, -224833, -4315871, -82846113, -1590286719, -30526618241, -585978870687, -11248256653025, -215917815567167, -4144686996149441, -79560041170858591, -1527208244431770145, -29315784501060168447, -562736106255347592449
Offset: 0

Views

Author

Roman Witula, Aug 23 2012

Keywords

Comments

The Berndt-type sequence number 12 for the argument 2Pi/7 defined by the relation sqrt(7)*a(n) = t(1)^(2*n+1) + t(2)^(2*n+1) + t(4)^(2*n+1) = (-sqrt(7) + 4*s(1))^(2*n+1) + (-sqrt(7) + 4*s(2))^(2*n+1) + (-sqrt(7) + 4*s(4))^(2*n+1), where t(j) := tan(2*Pi*j/7) and s(j) := sin(2*Pi*j/7) (the respective sum with even powers in A108716 are given, see also A215828). We note that sqrt(7)*a(n) = B(2*n+1), where B(n) is defined in the comments to A215575. From Witula-Slota's (Section 6) and Witula's (Remark 11) papers it follows that B(n) is equal to the product (-sqrt(7))^n by the value of big omega function with index n for the argument 2*i/sqrt(7). The last value is equal to A(n). The respective recurrence relation for A(n) from the following decomposition follow (see Witula-Slota's paper for details): (X-1-2*i*d*s(1))*(X-1-2*i*d*s(2))*(X-1- 2*i*d*s(4)) = X^3 - (3+i*sqrt(7))*X^2 + (3+i*2*sqrt(7)*d)*X - (1+i*sqrt(7)*d + i*sqrt(7)*d^3), since the big omega function with index n for the argument d is equal to the sum: (1 + 2*i*d*s(1))^n + (1 + 2*i*d*s(2))^n + (1 + 2*i*d*s(4))^n and it is equal to 3 for n=0, 3 + i*sqrt(7)*d for n=1, and lastly 3 + 2*i*sqrt(7)*d - 7*d^2 for n=2.
The sequence a(n+1)/a(n) is decreasing and convergent to (t(2))^2 = 19.195669... Moreover we have floor(a(n+1)/a(n)) = 19 for every n=1,2,...

Examples

			We have -31*sqrt(7) = t(1)^3 + t(2)^3 + t(4)^3.
		

Crossrefs

Programs

  • Magma
    m:=17; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(-(1+10*x-7*x^2)/(1-21*x+35*x^2-7*x^3)));  // Bruno Berselli, Aug 30 2012
    
  • Magma
    I:=[-1, -31, -609]; [n le 3 select I[n] else 21*Self(n-1)-35*Self(n-2)+7*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Mar 19 2013
  • Mathematica
      LinearRecurrence[{21, -35, 7}, {-1, -31, -609}, 17] (* Bruno Berselli, Aug 30 2012 *)

Formula

G.f.: -(1+10*x-7*x^2)/(1-21*x+35*x^2-7*x^3). [Bruno Berselli, Aug 30 2012]
a(n) = -A275195(2*n-1)/(7^n). - Kai Wang, Aug 02 2016

A275830 a(n) = (2*sqrt(7)*sin(Pi/7))^n + (-2*sqrt(7)*sin(2*Pi/7))^n + (-2*sqrt(7)*sin(4*Pi/7))^n.

Original entry on oeis.org

3, -7, 49, -196, 1029, -4802, 24010, -117649, 588245, -2941225, 14823774, -74942413, 380476866, -1936973136, 9886633715, -50563069571, 259029803333, -1328763571296, 6823754590093, -35073821767334, 180407337377834, -928487386730281, 4780794440512601, -24625601552074341, 126883328914736618
Offset: 0

Views

Author

Kai Wang, Aug 11 2016

Keywords

Comments

2*sqrt(7)*sin(Pi/7), -2*sqrt(7)*sin(2*Pi/7) and -2*sqrt(7)*sin(4*Pi/7) are roots of polynomial x^3 + 7*x^2 - 49.

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[0] == 3, a[1] == -7, a[2] == 49, a[n] == -7 a[n - 1] + 49 a[n - 3]}, a, {n, 0, 30}] (* Bruno Berselli, Aug 11 2016 *)
  • PARI
    Vec((3 + 14*x)/(1 + 7*x - 49*x^3) + O(x^30)) \\ Colin Barker, Aug 30 2016

Formula

G.f.: (3 + 14*x)/(1 + 7*x - 49*x^3). - Bruno Berselli, Aug 11 2016
a(n) = -7*a(n-1) + 49*a(n-3) with n>2, a(0)=3, a(1)=-7, a(2)=49.
a(2*n-1) = 7^n*A215493(n). - Kai Wang, May 25 2017

A275831 a(n) = (sqrt(7)*csc(Pi/7)/2)^n + (-sqrt(7)*csc(2*Pi/7)/2)^n + (-sqrt(7)*csc(4*Pi/7)/2)^n.

Original entry on oeis.org

3, 0, 14, 21, 98, 245, 833, 2401, 7546, 22638, 69629, 211288, 645869, 1966419, 6000099, 18286016, 55765626, 170002805, 518361494, 1580379017, 4818550093, 14691183577, 44792503770, 136568135690, 416385811429, 1269524476220, 3870677629833, 11801372013543, 35981414742371, 109704347503632, 334479507291398
Offset: 0

Views

Author

Kai Wang, Aug 11 2016

Keywords

Comments

(sqrt(7)*csc(Pi/7)/2), (-sqrt(7)*csc(2*Pi/7)/2) and (-sqrt(7)*csc(4*Pi/7)/2) are the roots of the polynomial x^3 - 7*x - 7. - Corrected by Colin Barker, Aug 12 2016

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[0] == 3, a[1] == 0, a[2] == 14, a[n] == 7 a[n - 2] + 7 a[n - 3]}, a, {n, 0, 30}] (* Bruno Berselli, Aug 11 2016 *)
    LinearRecurrence[{0,7,7},{3,0,14},40] (* Harvey P. Dale, Jan 01 2022 *)
  • PARI
    Vec((3-7*x^2)/(1-7*x^2-7*x^3) + O(x^30)) \\ Colin Barker, Aug 12 2016

Formula

G.f.: (3 - 7*x^2)/(1 - 7*x^2 - 7*x^3). - Bruno Berselli, Aug 11 2016
a(n) = 7*a(n-2) + 7*a(n-3) with n>2, a(0)=3, a(1)=0, a(2)=14.

Extensions

Name and comment corrected by Colin Barker, Aug 12 2016

A287396 a(n) = (7*(csc(2*Pi/7))^2)^n + (7*(csc(4*Pi/7))^2)^n + (7*(csc(8*Pi/7))^2)^n.

Original entry on oeis.org

3, 56, 1568, 53312, 1931776, 71300096, 2645479424, 98305622016, 3654656065536, 135885355483136, 5052615982317568, 187873377732526080, 6985794697679601664, 259756778648305139712, 9658687473893481906176, 359144636249686988029952, 13354285908291066433372160
Offset: 0

Views

Author

Kai Wang, May 24 2017

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{56,-784,3136},{3,56,1568},30] (* Harvey P. Dale, Aug 08 2017 *)
  • PARI
    Vec((3 - 28*x)*(1 - 28*x) / (1 - 56*x + 784*x^2 - 3136*x^3) + O(x^30)) \\ Colin Barker, May 25 2017
    
  • PARI
    polsym(x^3 - 56*x^2 + 784* x - 3136, 20) \\ Joerg Arndt, May 26 2017

Formula

a(n) = x1^n + x2^n + x3^n, where x1, x2, x3 are the roots of x^3 - 56*x^2 + 784* x - 3136, x1 = 7*(csc(2*Pi/7))^2, x2 = 7*(csc(4*Pi/7))^2, x3 = 7*(csc(8*Pi/7))^2.
a(n) = 56*a(n-1) - 784*a(n-2) + 3136*a(n-3) for n>2, a(0) = 3, a(1) = 56, a(2) = 1568.
G.f.: (3 - 28*x)*(1 - 28*x) / (1 - 56*x + 784*x^2 - 3136*x^3). - Colin Barker, May 25 2017

A287405 a(n) = (7*(cot(1*Pi/7))^2)^n + (7*(cot(2*Pi/7))^2)^n + (7*(cot(4*Pi/7))^2)^n.

Original entry on oeis.org

3, 35, 931, 27587, 830403, 25054435, 756187747, 22824258947, 688917131651, 20793986742179, 627637106311971, 18944339609269571, 571808137046942019, 17259221092289630307, 520945214725090792931, 15723995613526902256387, 474606601742375424297731
Offset: 0

Views

Author

Kai Wang, May 24 2017

Keywords

Comments

a(n) = x1^n + x2^n + x3^n, where x1, x2, x3 are the roots of x^3 - 35*x^2 + 147*x - 49, x1 = 7*(cot(1*Pi/7))^2, x2 = 7*(cot(2*Pi/7))^2, x3 = 7*(cot(4*Pi/7))^2.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{35,-147,49},{3,35,931},30] (* Harvey P. Dale, Mar 15 2018 *)
  • PARI
    Vec((3 - 7*x)*(1 - 21*x) / (1 - 35*x + 147*x^2 - 49*x^3) + O(x^30)) \\ Colin Barker, May 26 2017
    
  • PARI
    polsym(x^3 - 35*x^2 + 147*x - 49, 20) \\ Joerg Arndt, May 26 2017

Formula

a(n) = 35*a(n-1) - 147*a(n-2) + 49*a(n-3), a(0) = 3, a(1) = 35, a(2) = 931.
Bisection of A215575: a(n) = A215575(2*n).
G.f.: (3 - 7*x)*(1 - 21*x) / (1 - 35*x + 147*x^2 - 49*x^3). - Colin Barker, May 26 2017
Showing 1-6 of 6 results.