cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A215493 a(n) = 7*a(n-1) - 14*a(n-2) + 7*a(n-3) with a(0)=0, a(1)=1, a(2)=4.

Original entry on oeis.org

0, 1, 4, 14, 49, 175, 637, 2352, 8771, 32928, 124166, 469567, 1779141, 6749211, 25623472, 97329337, 369821228, 1405502182, 5342323441, 20307982135, 77201862045, 293497548512, 1115812645899, 4242135876440, 16128056932078, 61317184775679, 233122447515741
Offset: 0

Views

Author

Roman Witula, Aug 13 2012

Keywords

Comments

The Berndt-type sequence number 4 for the argument 2Pi/7 - see also A215007, A215008, A215143 and A215494.
We have a(n)=A079309(n) for n=1..6, and A079309(7)-a(7)=1.

Programs

  • Magma
    I:=[0,1,4]; [n le 3 select I[n] else 7*Self(n-1) - 14*Self(n-2) +7*Self(n-3): n in [1..30]]; // G. C. Greubel, Apr 23 2018
  • Mathematica
    LinearRecurrence[{7,-14,7}, {0,1,4}, 50]
  • PARI
    x='x+O('x^30); concat([0], Vec(x*(1-3*x)/(1-7*x+14*x^2-7*x^3))) \\ G. C. Greubel, Apr 23 2018
    

Formula

a(n)*sqrt(7) = s(1)^(2n-1) + s(2)^(2n-1) + s(4)^(2n-1), where s(j) := 2*Sin(2*Pi*j/7) (for the sums of the respective even powers see A215494, see also A094429, A115146). For the proof of these formula see Witula-Slota's paper.
G.f.: x*(1-3*x)/(1-7*x+14*x^2-7*x^3).
a(n) = A275830(2*n-1)/(7^n). - Kai Wang, May 25 2017

A275831 a(n) = (sqrt(7)*csc(Pi/7)/2)^n + (-sqrt(7)*csc(2*Pi/7)/2)^n + (-sqrt(7)*csc(4*Pi/7)/2)^n.

Original entry on oeis.org

3, 0, 14, 21, 98, 245, 833, 2401, 7546, 22638, 69629, 211288, 645869, 1966419, 6000099, 18286016, 55765626, 170002805, 518361494, 1580379017, 4818550093, 14691183577, 44792503770, 136568135690, 416385811429, 1269524476220, 3870677629833, 11801372013543, 35981414742371, 109704347503632, 334479507291398
Offset: 0

Views

Author

Kai Wang, Aug 11 2016

Keywords

Comments

(sqrt(7)*csc(Pi/7)/2), (-sqrt(7)*csc(2*Pi/7)/2) and (-sqrt(7)*csc(4*Pi/7)/2) are the roots of the polynomial x^3 - 7*x - 7. - Corrected by Colin Barker, Aug 12 2016

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[0] == 3, a[1] == 0, a[2] == 14, a[n] == 7 a[n - 2] + 7 a[n - 3]}, a, {n, 0, 30}] (* Bruno Berselli, Aug 11 2016 *)
    LinearRecurrence[{0,7,7},{3,0,14},40] (* Harvey P. Dale, Jan 01 2022 *)
  • PARI
    Vec((3-7*x^2)/(1-7*x^2-7*x^3) + O(x^30)) \\ Colin Barker, Aug 12 2016

Formula

G.f.: (3 - 7*x^2)/(1 - 7*x^2 - 7*x^3). - Bruno Berselli, Aug 11 2016
a(n) = 7*a(n-2) + 7*a(n-3) with n>2, a(0)=3, a(1)=0, a(2)=14.

Extensions

Name and comment corrected by Colin Barker, Aug 12 2016

A322458 Sum of n-th powers of the roots of x^3 - 49*x + 49.

Original entry on oeis.org

3, 0, 98, -147, 4802, -12005, 242501, -823543, 12470794, -52236156, 651422513, -3170640550, 34479274781, -187281090087, 1844845851219, -10866257878532, 99574220123994, -622844082757799, 5411583422123774, -35398496841207857, 295686947739197077, -1999693932903249919
Offset: 0

Views

Author

Kai Wang, Dec 09 2018

Keywords

Comments

Let A = sin(2*Pi/7), B = sin(4*Pi/7), C = sin(8*Pi/7).
In general, for integer h, k let
X = 2*sqrt(7)*A^(h+k+1)/(B^h*C^k),
Y = 2*sqrt(7)*B^(h+k+1)/(C^h*A^k),
Z = 2*sqrt(7)*C^(h+k+1)/(A^h*B^k).
then X, Y, Z are the roots of a monic equation
t^3 + a*t^2 + b*t + c = 0
where a, b, c are integers and c = 1 or -1.
Then X^n + Y^n + Z^n , n = 0, 1, 2, ... is an integer sequence.
This sequence has (h,k) = (0,1).

Crossrefs

Similar sequences with (h,k) values: A275830 (0,0).

Programs

  • Mathematica
    LinearRecurrence[{0, 49, -49}, {3, 0, 98}, 50] (* Amiram Eldar, Dec 09 2018 *)
  • PARI
    Vec((3 - 49*x^2) / (1 - 49*x^2 + 49*x^3) + O(x^25)) \\ Colin Barker, Dec 09 2018
    
  • PARI
    polsym(x^3 - 49*x + 49, 25) \\ Joerg Arndt, Dec 17 2018

Formula

a(n) = (2*sqrt(7)*A^2/C)^n + (2*sqrt(7)*B^2/A)^n + (2*sqrt(7)*C^2/B)^n, where A = sin(2*Pi/7), B = sin(4*Pi/7), C = sin(8*Pi/7).
a(n) = 49*a(n-2) - 49 a(n-3) for n>2.
G.f.: (3 - 49*x^2) / (1 - 49*x^2 + 49*x^3). - Colin Barker, Dec 09 2018
Showing 1-3 of 3 results.