cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353422 Dirichlet convolution of A353350 with A353418 (the Dirichlet inverse of A353269).

Original entry on oeis.org

1, 0, 0, -1, 0, 1, 0, 1, -1, -1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, -1, -1, 0, -1, -1, 1, 1, 0, 0, -1, 0, -1, 1, -1, 1, 2, 0, 1, -1, 1, 0, 0, 0, 1, 0, -1, 0, 1, -1, 1, 1, 0, 0, -1, -1, -1, -1, 1, 0, -2, 0, -1, 1, 1, 1, -1, 0, 1, 1, 0, 0, -1, 0, 1, 0, 0, 1, 0, 0, -2, 0, -1, 0, 2, -1, 1, -1, 1, 0, 2, -1, 1, 1, -1, 1, 0
Offset: 1

Views

Author

Antti Karttunen, Apr 19 2022

Keywords

Comments

Dirichlet convolution between this sequence and A353362 is A353352.

Crossrefs

Cf. A353421 (Dirichlet inverse).
Cf. also A353352, A353362.

Programs

  • PARI
    up_to = 65537;
    DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(dA048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; };
    A353350(n) = (0==(A048675(n)%3));
    A156552(n) = { my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res };
    A353269(n) = (!(A156552(n)%3));
    v353418 = DirInverseCorrect(vector(up_to,n,A353269(n)));
    A353418(n) = v353418[n];
    A353422(n) = sumdiv(n,d,A353350(n/d)*A353418(d));

Formula

a(n) = Sum_{d|n} A353350(n/d) * A353418(d).
a(n) = a(A003961(n)) = a(A348717(n)), for all n >= 1.