A353435 Array read by descending antidiagonals: T(n,m) is the number of sequences of length n >= 0 with elements in 0..m-1 such that the Hankel matrix of any odd number of consecutive terms is invertible over the ring of integers modulo m >= 1.
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 4, 0, 1, 1, 4, 4, 4, 0, 1, 1, 2, 16, 0, 4, 0, 1, 1, 6, 4, 48, 0, 0, 0, 1, 1, 4, 36, 0, 144, 0, 0, 0, 1, 1, 6, 16, 180, 0, 320, 0, 0, 0, 1, 1, 4, 36, 0, 900, 0, 720, 0, 0, 0, 1, 1, 10, 16, 108, 0, 3744, 0, 1312, 0, 0, 0, 1
Offset: 0
Examples
Array begins: n\m| 1 2 3 4 5 6 7 8 9 10 ---+-------------------------------------- 0 | 1 1 1 1 1 1 1 1 1 1 1 | 1 1 2 2 4 2 6 4 6 4 2 | 1 1 4 4 16 4 36 16 36 16 3 | 1 0 4 0 48 0 180 0 108 0 4 | 1 0 4 0 144 0 900 0 324 0 5 | 1 0 0 0 320 0 3744 0 0 0 6 | 1 0 0 0 720 0 15552 0 0 0 7 | 1 0 0 0 1312 0 54216 0 0 0 8 | 1 0 0 0 2400 0 189468 0 0 0 9 | 1 0 0 0 3232 0 550728 0 0 0 10 | 1 0 0 0 4560 0 1604088 0 0 0 11 | 1 0 0 0 4656 0 3895560 0 0 0 12 | 1 0 0 0 4928 0 9467856 0 0 0 13 | 1 0 0 0 4368 0 19185516 0 0 0
Crossrefs
Formula
For fixed n, T(n,m) is multiplicative with T(n,p^e) = T(n,p)*p^(n*(e-1)).
T(n,m) = A353436(n,m) if m is prime.
T(3,m) = (m-1)^2*(m-2) = A045991(m-1) if m is prime.
T(4,m) = (m-1)^2*(m-2)^2 = A035287(m-1) if m is prime.
Empirically: T(5,m) = (m-1)^2*(m-3)*(m^2-4*m+5) if m >= 3 is prime.
T(n,2) = 0 for n >= 3.
T(n,3) = 0 for n >= 5.
T(n,5) = 0 for n >= 23.
Comments