cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353435 Array read by descending antidiagonals: T(n,m) is the number of sequences of length n >= 0 with elements in 0..m-1 such that the Hankel matrix of any odd number of consecutive terms is invertible over the ring of integers modulo m >= 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 4, 0, 1, 1, 4, 4, 4, 0, 1, 1, 2, 16, 0, 4, 0, 1, 1, 6, 4, 48, 0, 0, 0, 1, 1, 4, 36, 0, 144, 0, 0, 0, 1, 1, 6, 16, 180, 0, 320, 0, 0, 0, 1, 1, 4, 36, 0, 900, 0, 720, 0, 0, 0, 1, 1, 10, 16, 108, 0, 3744, 0, 1312, 0, 0, 0, 1
Offset: 0

Views

Author

Pontus von Brömssen, Apr 21 2022

Keywords

Comments

T(n,m) is divisible by T(2,m) = A127473(n) for n >= 2, because if r and s are coprime to m, the sequence (x_1, ..., x_n) satisfies the conditions if and only if the sequence (r*s^0*x_1 mod m, ..., r*s^(n-1)*x_n mod m) does.

Examples

			Array begins:
  n\m| 1  2  3  4    5  6        7  8   9 10
  ---+--------------------------------------
   0 | 1  1  1  1    1  1        1  1   1  1
   1 | 1  1  2  2    4  2        6  4   6  4
   2 | 1  1  4  4   16  4       36 16  36 16
   3 | 1  0  4  0   48  0      180  0 108  0
   4 | 1  0  4  0  144  0      900  0 324  0
   5 | 1  0  0  0  320  0     3744  0   0  0
   6 | 1  0  0  0  720  0    15552  0   0  0
   7 | 1  0  0  0 1312  0    54216  0   0  0
   8 | 1  0  0  0 2400  0   189468  0   0  0
   9 | 1  0  0  0 3232  0   550728  0   0  0
  10 | 1  0  0  0 4560  0  1604088  0   0  0
  11 | 1  0  0  0 4656  0  3895560  0   0  0
  12 | 1  0  0  0 4928  0  9467856  0   0  0
  13 | 1  0  0  0 4368  0 19185516  0   0  0
		

Crossrefs

Rows: A000012 (n=0), A000010 (n=1), A127473 (n=2).
Columns: A000012 (m=1), A130716 (m=2), A166926 (m=4 and m=6).

Formula

For fixed n, T(n,m) is multiplicative with T(n,p^e) = T(n,p)*p^(n*(e-1)).
T(n,m) = A353436(n,m) if m is prime.
T(3,m) = (m-1)^2*(m-2) = A045991(m-1) if m is prime.
T(4,m) = (m-1)^2*(m-2)^2 = A035287(m-1) if m is prime.
Empirically: T(5,m) = (m-1)^2*(m-3)*(m^2-4*m+5) if m >= 3 is prime.
T(n,2) = 0 for n >= 3.
T(n,3) = 0 for n >= 5.
T(n,5) = 0 for n >= 23.